Proof of Theorem lem4.6.6i4j2
| Step | Hyp | Ref
| Expression |
| 1 | | ax-a3 32 |
. . 3
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) ∪ (b ∪ (a⊥ ∩ b⊥ ))) = (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (((a⊥ ∪ b) ∩ b⊥ ) ∪ (b ∪ (a⊥ ∩ b⊥ )))) |
| 2 | | ax-a3 32 |
. . . . . 6
((((a⊥ ∪
b) ∩ b⊥ ) ∪ b) ∪ (a⊥ ∩ b⊥ )) = (((a⊥ ∪ b) ∩ b⊥ ) ∪ (b ∪ (a⊥ ∩ b⊥ ))) |
| 3 | 2 | ax-r1 35 |
. . . . 5
(((a⊥ ∪
b) ∩ b⊥ ) ∪ (b ∪ (a⊥ ∩ b⊥ ))) = ((((a⊥ ∪ b) ∩ b⊥ ) ∪ b) ∪ (a⊥ ∩ b⊥ )) |
| 4 | | ax-a2 31 |
. . . . . . 7
(((a⊥ ∪
b) ∩ b⊥ ) ∪ b) = (b ∪
((a⊥ ∪ b) ∩ b⊥ )) |
| 5 | | ancom 74 |
. . . . . . . 8
((a⊥ ∪ b) ∩ b⊥ ) = (b⊥ ∩ (a⊥ ∪ b)) |
| 6 | 5 | lor 70 |
. . . . . . 7
(b ∪ ((a⊥ ∪ b) ∩ b⊥ )) = (b ∪ (b⊥ ∩ (a⊥ ∪ b))) |
| 7 | | leor 159 |
. . . . . . . 8
b ≤ (a⊥ ∪ b) |
| 8 | 7 | oml2 451 |
. . . . . . 7
(b ∪ (b⊥ ∩ (a⊥ ∪ b))) = (a⊥ ∪ b) |
| 9 | 4, 6, 8 | 3tr 65 |
. . . . . 6
(((a⊥ ∪
b) ∩ b⊥ ) ∪ b) = (a⊥ ∪ b) |
| 10 | 9 | ax-r5 38 |
. . . . 5
((((a⊥ ∪
b) ∩ b⊥ ) ∪ b) ∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∪ b) ∪ (a⊥ ∩ b⊥ )) |
| 11 | 3, 10 | ax-r2 36 |
. . . 4
(((a⊥ ∪
b) ∩ b⊥ ) ∪ (b ∪ (a⊥ ∩ b⊥ ))) = ((a⊥ ∪ b) ∪ (a⊥ ∩ b⊥ )) |
| 12 | 11 | lor 70 |
. . 3
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (((a⊥ ∪ b) ∩ b⊥ ) ∪ (b ∪ (a⊥ ∩ b⊥ )))) = (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∪ (a⊥ ∩ b⊥ ))) |
| 13 | | leao4 165 |
. . . . . 6
(a ∩ b) ≤ (a⊥ ∪ b) |
| 14 | | leao1 162 |
. . . . . 6
(a⊥ ∩ b) ≤ (a⊥ ∪ b) |
| 15 | 13, 14 | lel2or 170 |
. . . . 5
((a ∩ b) ∪ (a⊥ ∩ b)) ≤ (a⊥ ∪ b) |
| 16 | | leid 148 |
. . . . . 6
(a⊥ ∪ b) ≤ (a⊥ ∪ b) |
| 17 | | leao1 162 |
. . . . . 6
(a⊥ ∩ b⊥ ) ≤ (a⊥ ∪ b) |
| 18 | 16, 17 | lel2or 170 |
. . . . 5
((a⊥ ∪ b) ∪ (a⊥ ∩ b⊥ )) ≤ (a⊥ ∪ b) |
| 19 | 15, 18 | lel2or 170 |
. . . 4
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∪ (a⊥ ∩ b⊥ ))) ≤ (a⊥ ∪ b) |
| 20 | | leo 158 |
. . . . 5
(a⊥ ∪ b) ≤ ((a⊥ ∪ b) ∪ (a⊥ ∩ b⊥ )) |
| 21 | 20 | lerr 150 |
. . . 4
(a⊥ ∪ b) ≤ (((a
∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∪ (a⊥ ∩ b⊥ ))) |
| 22 | 19, 21 | lebi 145 |
. . 3
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∪ (a⊥ ∩ b⊥ ))) = (a⊥ ∪ b) |
| 23 | 1, 12, 22 | 3tr 65 |
. 2
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) ∪ (b ∪ (a⊥ ∩ b⊥ ))) = (a⊥ ∪ b) |
| 24 | | df-i4 47 |
. . 3
(a →4 b) = (((a ∩
b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) |
| 25 | | df-i2 45 |
. . 3
(a →2 b) = (b ∪
(a⊥ ∩ b⊥ )) |
| 26 | 24, 25 | 2or 72 |
. 2
((a →4 b) ∪ (a
→2 b)) = ((((a ∩ b) ∪
(a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) ∪ (b ∪ (a⊥ ∩ b⊥ ))) |
| 27 | | df-i0 43 |
. 2
(a →0 b) = (a⊥ ∪ b) |
| 28 | 23, 26, 27 | 3tr1 63 |
1
((a →4 b) ∪ (a
→2 b)) = (a →0 b) |