Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > df-i4 | GIF version |
Description: Define non-tollens conditional. (Contributed by NM, 23-Nov-1997.) |
Ref | Expression |
---|---|
df-i4 | (a →4 b) = (((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wva | . . 3 term a | |
2 | wvb | . . 3 term b | |
3 | 1, 2 | wi4 15 | . 2 term (a →4 b) |
4 | 1, 2 | wa 7 | . . . 4 term (a ∩ b) |
5 | 1 | wn 4 | . . . . 5 term a⊥ |
6 | 5, 2 | wa 7 | . . . 4 term (a⊥ ∩ b) |
7 | 4, 6 | wo 6 | . . 3 term ((a ∩ b) ∪ (a⊥ ∩ b)) |
8 | 5, 2 | wo 6 | . . . 4 term (a⊥ ∪ b) |
9 | 2 | wn 4 | . . . 4 term b⊥ |
10 | 8, 9 | wa 7 | . . 3 term ((a⊥ ∪ b) ∩ b⊥ ) |
11 | 7, 10 | wo 6 | . 2 term (((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) |
12 | 3, 11 | wb 1 | 1 wff (a →4 b) = (((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) |
Colors of variables: term |
This definition is referenced by: ud4lem0a 262 ud4lem0b 263 i3i4 270 ud4lem0c 280 nom14 311 i5lei4 350 ud4lem1a 577 ud4lem1b 578 ud4lem1c 579 ud4lem1 581 ud4lem2 582 ud4lem3 585 u4lemaa 603 u4lemana 608 u4lemab 613 u4lemanb 618 u4lemoa 623 u4lemona 628 u4lemob 633 u4lemonb 638 u4lemc1 683 u4lemc2 689 u4lemc4 704 u4lemle2 718 u4lem1 737 u4lem4 759 u4lem5 764 u4lem6 768 negantlem10 861 lem3.3.7i4e1 1069 lem4.6.6i0j4 1091 lem4.6.6i2j4 1097 lem4.6.6i4j0 1100 lem4.6.6i4j2 1101 |
Copyright terms: Public domain | W3C validator |