![]() |
Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > QLE Home > Th. List > ska15 | GIF version |
Description: Soundness theorem for Kalmbach's quantum propositional logic axiom KA15. (Contributed by NM, 2-Nov-1997.) |
Ref | Expression |
---|---|
ska15 | ((a →3 b)⊥ ∪ (a⊥ ∪ b)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-i3 46 | . . 3 (a →3 b) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) | |
2 | ax-a2 31 | . . . . . 6 ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b)) | |
3 | lea 160 | . . . . . . 7 (a⊥ ∩ b⊥ ) ≤ a⊥ | |
4 | lear 161 | . . . . . . 7 (a⊥ ∩ b) ≤ b | |
5 | 3, 4 | le2or 168 | . . . . . 6 ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b)) ≤ (a⊥ ∪ b) |
6 | 2, 5 | bltr 138 | . . . . 5 ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ≤ (a⊥ ∪ b) |
7 | lear 161 | . . . . 5 (a ∩ (a⊥ ∪ b)) ≤ (a⊥ ∪ b) | |
8 | 6, 7 | le2or 168 | . . . 4 (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) ≤ ((a⊥ ∪ b) ∪ (a⊥ ∪ b)) |
9 | oridm 110 | . . . 4 ((a⊥ ∪ b) ∪ (a⊥ ∪ b)) = (a⊥ ∪ b) | |
10 | 8, 9 | lbtr 139 | . . 3 (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) ≤ (a⊥ ∪ b) |
11 | 1, 10 | bltr 138 | . 2 (a →3 b) ≤ (a⊥ ∪ b) |
12 | 11 | sklem 230 | 1 ((a →3 b)⊥ ∪ (a⊥ ∪ b)) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 1wt 8 →3 wi3 14 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i3 46 df-le1 130 df-le2 131 |
This theorem is referenced by: skmp3 245 mccune3 248 |
Copyright terms: Public domain | W3C validator |