Proof of Theorem i3n1
| Step | Hyp | Ref
| Expression |
| 1 | | df-i3 46 |
. 2
(a⊥ →3
b⊥ ) = (((a⊥ ⊥ ∩
b⊥ ) ∪ (a⊥ ⊥ ∩
b⊥ ⊥ ))
∪ (a⊥ ∩ (a⊥ ⊥ ∪
b⊥ ))) |
| 2 | | ax-a1 30 |
. . . . . 6
a = a⊥
⊥ |
| 3 | 2 | ran 78 |
. . . . 5
(a ∩ b⊥ ) = (a⊥ ⊥ ∩
b⊥ ) |
| 4 | | ax-a1 30 |
. . . . . 6
b = b⊥
⊥ |
| 5 | 2, 4 | 2an 79 |
. . . . 5
(a ∩ b) = (a⊥ ⊥ ∩
b⊥ ⊥
) |
| 6 | 3, 5 | 2or 72 |
. . . 4
((a ∩ b⊥ ) ∪ (a ∩ b)) =
((a⊥ ⊥
∩ b⊥ ) ∪ (a⊥ ⊥ ∩
b⊥ ⊥
)) |
| 7 | 2 | ax-r5 38 |
. . . . 5
(a ∪ b⊥ ) = (a⊥ ⊥ ∪
b⊥ ) |
| 8 | 7 | lan 77 |
. . . 4
(a⊥ ∩ (a ∪ b⊥ )) = (a⊥ ∩ (a⊥ ⊥ ∪
b⊥ )) |
| 9 | 6, 8 | 2or 72 |
. . 3
(((a ∩ b⊥ ) ∪ (a ∩ b))
∪ (a⊥ ∩ (a ∪ b⊥ ))) = (((a⊥ ⊥ ∩
b⊥ ) ∪ (a⊥ ⊥ ∩
b⊥ ⊥ ))
∪ (a⊥ ∩ (a⊥ ⊥ ∪
b⊥ ))) |
| 10 | 9 | ax-r1 35 |
. 2
(((a⊥
⊥ ∩ b⊥ ) ∪ (a⊥ ⊥ ∩
b⊥ ⊥ ))
∪ (a⊥ ∩ (a⊥ ⊥ ∪
b⊥ ))) = (((a ∩ b⊥ ) ∪ (a ∩ b))
∪ (a⊥ ∩ (a ∪ b⊥ ))) |
| 11 | 1, 10 | ax-r2 36 |
1
(a⊥ →3
b⊥ ) = (((a ∩ b⊥ ) ∪ (a ∩ b))
∪ (a⊥ ∩ (a ∪ b⊥ ))) |