Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > negantlem4 | GIF version |
Description: Lemma for negated antecedent identity. (Contributed by NM, 6-Aug-2001.) |
Ref | Expression |
---|---|
negant.1 | (a →1 c) = (b →1 c) |
Ref | Expression |
---|---|
negantlem4 | (a⊥ →1 c) ≤ (b⊥ →1 c) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-i1 44 | . . 3 (a⊥ →1 c) = (a⊥ ⊥ ∪ (a⊥ ∩ c)) | |
2 | ax-a1 30 | . . . . 5 a = a⊥ ⊥ | |
3 | 2 | ax-r5 38 | . . . 4 (a ∪ (a⊥ ∩ c)) = (a⊥ ⊥ ∪ (a⊥ ∩ c)) |
4 | 3 | ax-r1 35 | . . 3 (a⊥ ⊥ ∪ (a⊥ ∩ c)) = (a ∪ (a⊥ ∩ c)) |
5 | 1, 4 | ax-r2 36 | . 2 (a⊥ →1 c) = (a ∪ (a⊥ ∩ c)) |
6 | negant.1 | . . . 4 (a →1 c) = (b →1 c) | |
7 | 6 | negantlem2 849 | . . 3 a ≤ (b⊥ →1 c) |
8 | 6 | negantlem3 850 | . . 3 (a⊥ ∩ c) ≤ (b⊥ →1 c) |
9 | 7, 8 | lel2or 170 | . 2 (a ∪ (a⊥ ∩ c)) ≤ (b⊥ →1 c) |
10 | 5, 9 | bltr 138 | 1 (a⊥ →1 c) ≤ (b⊥ →1 c) |
Colors of variables: term |
Syntax hints: = wb 1 ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: negant 852 |
Copyright terms: Public domain | W3C validator |