Proof of Theorem negantlem2
| Step | Hyp | Ref
| Expression |
| 1 | | leo 158 |
. 2
a ≤ (a ∪ (b⊥ →1 c)) |
| 2 | | i1orni1 847 |
. . . . . 6
((b →1 c) ∪ (b⊥ →1 c)) = 1 |
| 3 | 2 | lan 77 |
. . . . 5
((a ∪ (b⊥ →1 c)) ∩ ((b
→1 c) ∪ (b⊥ →1 c))) = ((a ∪
(b⊥ →1
c)) ∩ 1) |
| 4 | 3 | ax-r1 35 |
. . . 4
((a ∪ (b⊥ →1 c)) ∩ 1) = ((a ∪ (b⊥ →1 c)) ∩ ((b
→1 c) ∪ (b⊥ →1 c))) |
| 5 | | an1 106 |
. . . . 5
((a ∪ (b⊥ →1 c)) ∩ 1) = (a ∪ (b⊥ →1 c)) |
| 6 | 5 | ax-r1 35 |
. . . 4
(a ∪ (b⊥ →1 c)) = ((a ∪
(b⊥ →1
c)) ∩ 1) |
| 7 | | u1lemc6 706 |
. . . . 5
(b →1 c) C (b⊥ →1 c) |
| 8 | | negant.1 |
. . . . . . 7
(a →1 c) = (b
→1 c) |
| 9 | 8 | negantlem1 848 |
. . . . . 6
a C (b →1 c) |
| 10 | 9 | comcom 453 |
. . . . 5
(b →1 c) C a |
| 11 | 7, 10 | fh4rc 482 |
. . . 4
((a ∩ (b →1 c)) ∪ (b⊥ →1 c)) = ((a ∪
(b⊥ →1
c)) ∩ ((b →1 c) ∪ (b⊥ →1 c))) |
| 12 | 4, 6, 11 | 3tr1 63 |
. . 3
(a ∪ (b⊥ →1 c)) = ((a ∩
(b →1 c)) ∪ (b⊥ →1 c)) |
| 13 | | ancom 74 |
. . . . . . . 8
(a ∩ (a →1 c)) = ((a
→1 c) ∩ a) |
| 14 | 8 | lan 77 |
. . . . . . . 8
(a ∩ (a →1 c)) = (a ∩
(b →1 c)) |
| 15 | | u1lemaa 600 |
. . . . . . . 8
((a →1 c) ∩ a) =
(a ∩ c) |
| 16 | 13, 14, 15 | 3tr2 64 |
. . . . . . 7
(a ∩ (b →1 c)) = (a ∩
c) |
| 17 | | lear 161 |
. . . . . . 7
(a ∩ c) ≤ c |
| 18 | 16, 17 | bltr 138 |
. . . . . 6
(a ∩ (b →1 c)) ≤ c |
| 19 | | lear 161 |
. . . . . 6
(a ∩ (b →1 c)) ≤ (b
→1 c) |
| 20 | 18, 19 | ler2an 173 |
. . . . 5
(a ∩ (b →1 c)) ≤ (c
∩ (b →1 c)) |
| 21 | | lea 160 |
. . . . . . . 8
(b ∩ c) ≤ b |
| 22 | | ax-a1 30 |
. . . . . . . 8
b = b⊥
⊥ |
| 23 | 21, 22 | lbtr 139 |
. . . . . . 7
(b ∩ c) ≤ b⊥
⊥ |
| 24 | 23 | leror 152 |
. . . . . 6
((b ∩ c) ∪ (b⊥ ∩ c)) ≤ (b⊥ ⊥ ∪
(b⊥ ∩ c)) |
| 25 | | ancom 74 |
. . . . . . 7
(c ∩ (b →1 c)) = ((b
→1 c) ∩ c) |
| 26 | | u1lemab 610 |
. . . . . . 7
((b →1 c) ∩ c) =
((b ∩ c) ∪ (b⊥ ∩ c)) |
| 27 | 25, 26 | ax-r2 36 |
. . . . . 6
(c ∩ (b →1 c)) = ((b ∩
c) ∪ (b⊥ ∩ c)) |
| 28 | | df-i1 44 |
. . . . . 6
(b⊥ →1
c) = (b⊥ ⊥ ∪
(b⊥ ∩ c)) |
| 29 | 24, 27, 28 | le3tr1 140 |
. . . . 5
(c ∩ (b →1 c)) ≤ (b⊥ →1 c) |
| 30 | 20, 29 | letr 137 |
. . . 4
(a ∩ (b →1 c)) ≤ (b⊥ →1 c) |
| 31 | | leid 148 |
. . . 4
(b⊥ →1
c) ≤ (b⊥ →1 c) |
| 32 | 30, 31 | lel2or 170 |
. . 3
((a ∩ (b →1 c)) ∪ (b⊥ →1 c)) ≤ (b⊥ →1 c) |
| 33 | 12, 32 | bltr 138 |
. 2
(a ∪ (b⊥ →1 c)) ≤ (b⊥ →1 c) |
| 34 | 1, 33 | letr 137 |
1
a ≤ (b⊥ →1 c) |