Proof of Theorem negantlem3
Step | Hyp | Ref
| Expression |
1 | | leo 158 |
. . . 4
a⊥ ≤ (a⊥ ∪ (a ∩ c)) |
2 | | df-i1 44 |
. . . . . 6
(a →1 c) = (a⊥ ∪ (a ∩ c)) |
3 | 2 | ax-r1 35 |
. . . . 5
(a⊥ ∪ (a ∩ c)) =
(a →1 c) |
4 | | negant.1 |
. . . . 5
(a →1 c) = (b
→1 c) |
5 | 3, 4 | ax-r2 36 |
. . . 4
(a⊥ ∪ (a ∩ c)) =
(b →1 c) |
6 | 1, 5 | lbtr 139 |
. . 3
a⊥ ≤ (b →1 c) |
7 | 6 | leran 153 |
. 2
(a⊥ ∩ c) ≤ ((b
→1 c) ∩ c) |
8 | | lea 160 |
. . . 4
(b ∩ c) ≤ b |
9 | 8 | leror 152 |
. . 3
((b ∩ c) ∪ (b⊥ ∩ c)) ≤ (b
∪ (b⊥ ∩ c)) |
10 | | u1lemab 610 |
. . 3
((b →1 c) ∩ c) =
((b ∩ c) ∪ (b⊥ ∩ c)) |
11 | | df-i1 44 |
. . . 4
(b⊥ →1
c) = (b⊥ ⊥ ∪
(b⊥ ∩ c)) |
12 | | ax-a1 30 |
. . . . . 6
b = b⊥
⊥ |
13 | 12 | ax-r5 38 |
. . . . 5
(b ∪ (b⊥ ∩ c)) = (b⊥ ⊥ ∪
(b⊥ ∩ c)) |
14 | 13 | ax-r1 35 |
. . . 4
(b⊥
⊥ ∪ (b⊥ ∩ c)) = (b ∪
(b⊥ ∩ c)) |
15 | 11, 14 | ax-r2 36 |
. . 3
(b⊥ →1
c) = (b ∪ (b⊥ ∩ c)) |
16 | 9, 10, 15 | le3tr1 140 |
. 2
((b →1 c) ∩ c) ≤
(b⊥ →1
c) |
17 | 7, 16 | letr 137 |
1
(a⊥ ∩ c) ≤ (b⊥ →1 c) |