Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > negantlem6 | GIF version |
Description: Negated antecedent identity. (Contributed by NM, 6-Aug-2001.) |
Ref | Expression |
---|---|
negant.1 | (a →1 c) = (b →1 c) |
Ref | Expression |
---|---|
negantlem6 | (a ∩ c⊥ ) = (b ∩ c⊥ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negant.1 | . . . 4 (a →1 c) = (b →1 c) | |
2 | 1 | negant 852 | . . 3 (a⊥ →1 c) = (b⊥ →1 c) |
3 | 2 | negantlem5 853 | . 2 (a⊥ ⊥ ∩ c⊥ ) = (b⊥ ⊥ ∩ c⊥ ) |
4 | ax-a1 30 | . . 3 a = a⊥ ⊥ | |
5 | 4 | ran 78 | . 2 (a ∩ c⊥ ) = (a⊥ ⊥ ∩ c⊥ ) |
6 | ax-a1 30 | . . 3 b = b⊥ ⊥ | |
7 | 6 | ran 78 | . 2 (b ∩ c⊥ ) = (b⊥ ⊥ ∩ c⊥ ) |
8 | 3, 5, 7 | 3tr1 63 | 1 (a ∩ c⊥ ) = (b ∩ c⊥ ) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∩ wa 7 →1 wi1 12 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: negantlem8 856 negant2 858 |
Copyright terms: Public domain | W3C validator |