| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > negant2 | GIF version | ||
| Description: Negated antecedent identity. (Contributed by NM, 6-Aug-2001.) |
| Ref | Expression |
|---|---|
| negant.1 | (a →1 c) = (b →1 c) |
| Ref | Expression |
|---|---|
| negant2 | (a⊥ →2 c) = (b⊥ →2 c) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negant.1 | . . . . 5 (a →1 c) = (b →1 c) | |
| 2 | 1 | negantlem6 854 | . . . 4 (a ∩ c⊥ ) = (b ∩ c⊥ ) |
| 3 | ax-a1 30 | . . . . 5 a = a⊥ ⊥ | |
| 4 | 3 | ran 78 | . . . 4 (a ∩ c⊥ ) = (a⊥ ⊥ ∩ c⊥ ) |
| 5 | ax-a1 30 | . . . . 5 b = b⊥ ⊥ | |
| 6 | 5 | ran 78 | . . . 4 (b ∩ c⊥ ) = (b⊥ ⊥ ∩ c⊥ ) |
| 7 | 2, 4, 6 | 3tr2 64 | . . 3 (a⊥ ⊥ ∩ c⊥ ) = (b⊥ ⊥ ∩ c⊥ ) |
| 8 | 7 | lor 70 | . 2 (c ∪ (a⊥ ⊥ ∩ c⊥ )) = (c ∪ (b⊥ ⊥ ∩ c⊥ )) |
| 9 | df-i2 45 | . 2 (a⊥ →2 c) = (c ∪ (a⊥ ⊥ ∩ c⊥ )) | |
| 10 | df-i2 45 | . 2 (b⊥ →2 c) = (c ∪ (b⊥ ⊥ ∩ c⊥ )) | |
| 11 | 8, 9, 10 | 3tr1 63 | 1 (a⊥ →2 c) = (b⊥ →2 c) |
| Colors of variables: term |
| Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 →2 wi2 13 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: negant5 863 |
| Copyright terms: Public domain | W3C validator |