| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > nom12 | GIF version | ||
| Description: Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. (Contributed by NM, 7-Feb-1999.) |
| Ref | Expression |
|---|---|
| nom12 | (a →2 (a ∩ b)) = (a →1 b) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oran 87 | . . . . . . 7 (a ∪ (a ∩ b)) = (a⊥ ∩ (a ∩ b)⊥ )⊥ | |
| 2 | 1 | ax-r1 35 | . . . . . 6 (a⊥ ∩ (a ∩ b)⊥ )⊥ = (a ∪ (a ∩ b)) |
| 3 | orabs 120 | . . . . . 6 (a ∪ (a ∩ b)) = a | |
| 4 | 2, 3 | ax-r2 36 | . . . . 5 (a⊥ ∩ (a ∩ b)⊥ )⊥ = a |
| 5 | 4 | con3 68 | . . . 4 (a⊥ ∩ (a ∩ b)⊥ ) = a⊥ |
| 6 | 5 | lor 70 | . . 3 ((a ∩ b) ∪ (a⊥ ∩ (a ∩ b)⊥ )) = ((a ∩ b) ∪ a⊥ ) |
| 7 | ax-a2 31 | . . 3 ((a ∩ b) ∪ a⊥ ) = (a⊥ ∪ (a ∩ b)) | |
| 8 | 6, 7 | ax-r2 36 | . 2 ((a ∩ b) ∪ (a⊥ ∩ (a ∩ b)⊥ )) = (a⊥ ∪ (a ∩ b)) |
| 9 | df-i2 45 | . 2 (a →2 (a ∩ b)) = ((a ∩ b) ∪ (a⊥ ∩ (a ∩ b)⊥ )) | |
| 10 | df-i1 44 | . 2 (a →1 b) = (a⊥ ∪ (a ∩ b)) | |
| 11 | 8, 9, 10 | 3tr1 63 | 1 (a →2 (a ∩ b)) = (a →1 b) |
| Colors of variables: term |
| Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 →2 wi2 13 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-i1 44 df-i2 45 |
| This theorem is referenced by: nom41 326 lem3.3.7i2e3 1065 |
| Copyright terms: Public domain | W3C validator |