Proof of Theorem nom14
Step | Hyp | Ref
| Expression |
1 | | ax-a2 31 |
. . . . 5
((a ∩ (a ∩ b))
∪ (a⊥ ∩ (a ∩ b))) =
((a⊥ ∩ (a ∩ b))
∪ (a ∩ (a ∩ b))) |
2 | | anass 76 |
. . . . . . . 8
((a ∩ a) ∩ b) =
(a ∩ (a ∩ b)) |
3 | 2 | ax-r1 35 |
. . . . . . 7
(a ∩ (a ∩ b)) =
((a ∩ a) ∩ b) |
4 | | anidm 111 |
. . . . . . . 8
(a ∩ a) = a |
5 | 4 | ran 78 |
. . . . . . 7
((a ∩ a) ∩ b) =
(a ∩ b) |
6 | 3, 5 | ax-r2 36 |
. . . . . 6
(a ∩ (a ∩ b)) =
(a ∩ b) |
7 | 6 | lor 70 |
. . . . 5
((a⊥ ∩
(a ∩ b)) ∪ (a
∩ (a ∩ b))) = ((a⊥ ∩ (a ∩ b))
∪ (a ∩ b)) |
8 | | lear 161 |
. . . . . 6
(a⊥ ∩ (a ∩ b)) ≤
(a ∩ b) |
9 | 8 | df-le2 131 |
. . . . 5
((a⊥ ∩
(a ∩ b)) ∪ (a
∩ b)) = (a ∩ b) |
10 | 1, 7, 9 | 3tr 65 |
. . . 4
((a ∩ (a ∩ b))
∪ (a⊥ ∩ (a ∩ b))) =
(a ∩ b) |
11 | 10 | ax-r5 38 |
. . 3
(((a ∩ (a ∩ b))
∪ (a⊥ ∩ (a ∩ b)))
∪ ((a⊥ ∪ (a ∩ b))
∩ (a ∩ b)⊥ )) = ((a ∩ b) ∪
((a⊥ ∪ (a ∩ b))
∩ (a ∩ b)⊥ )) |
12 | | leo 158 |
. . . . 5
(a ∩ b) ≤ ((a
∩ b) ∪ a⊥ ) |
13 | | lea 160 |
. . . . . 6
((a⊥ ∪
(a ∩ b)) ∩ (a
∩ b)⊥ ) ≤ (a⊥ ∪ (a ∩ b)) |
14 | | ax-a2 31 |
. . . . . 6
(a⊥ ∪ (a ∩ b)) =
((a ∩ b) ∪ a⊥ ) |
15 | 13, 14 | lbtr 139 |
. . . . 5
((a⊥ ∪
(a ∩ b)) ∩ (a
∩ b)⊥ ) ≤
((a ∩ b) ∪ a⊥ ) |
16 | 12, 15 | lel2or 170 |
. . . 4
((a ∩ b) ∪ ((a⊥ ∪ (a ∩ b))
∩ (a ∩ b)⊥ )) ≤ ((a ∩ b) ∪
a⊥ ) |
17 | | leo 158 |
. . . . . 6
a⊥ ≤ (a⊥ ∪ (a ∩ b)) |
18 | | lea 160 |
. . . . . . 7
(a ∩ b) ≤ a |
19 | 18 | lecon 154 |
. . . . . 6
a⊥ ≤ (a ∩ b)⊥ |
20 | 17, 19 | ler2an 173 |
. . . . 5
a⊥ ≤ ((a⊥ ∪ (a ∩ b))
∩ (a ∩ b)⊥ ) |
21 | 20 | lelor 166 |
. . . 4
((a ∩ b) ∪ a⊥ ) ≤ ((a ∩ b) ∪
((a⊥ ∪ (a ∩ b))
∩ (a ∩ b)⊥ )) |
22 | 16, 21 | lebi 145 |
. . 3
((a ∩ b) ∪ ((a⊥ ∪ (a ∩ b))
∩ (a ∩ b)⊥ )) = ((a ∩ b) ∪
a⊥ ) |
23 | | ax-a2 31 |
. . 3
((a ∩ b) ∪ a⊥ ) = (a⊥ ∪ (a ∩ b)) |
24 | 11, 22, 23 | 3tr 65 |
. 2
(((a ∩ (a ∩ b))
∪ (a⊥ ∩ (a ∩ b)))
∪ ((a⊥ ∪ (a ∩ b))
∩ (a ∩ b)⊥ )) = (a⊥ ∪ (a ∩ b)) |
25 | | df-i4 47 |
. 2
(a →4 (a ∩ b)) =
(((a ∩ (a ∩ b))
∪ (a⊥ ∩ (a ∩ b)))
∪ ((a⊥ ∪ (a ∩ b))
∩ (a ∩ b)⊥ )) |
26 | | df-i1 44 |
. 2
(a →1 b) = (a⊥ ∪ (a ∩ b)) |
27 | 24, 25, 26 | 3tr1 63 |
1
(a →4 (a ∩ b)) =
(a →1 b) |