Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > nom30 | GIF version |
Description: Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. (Contributed by NM, 7-Feb-1999.) |
Ref | Expression |
---|---|
nom30 | ((a ∩ b) ≡0 a) = (a →1 b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 74 | . . 3 (((a ∩ b)⊥ ∪ a) ∩ (a⊥ ∪ (a ∩ b))) = ((a⊥ ∪ (a ∩ b)) ∩ ((a ∩ b)⊥ ∪ a)) | |
2 | df-id0 49 | . . 3 ((a ∩ b) ≡0 a) = (((a ∩ b)⊥ ∪ a) ∩ (a⊥ ∪ (a ∩ b))) | |
3 | df-id0 49 | . . 3 (a ≡0 (a ∩ b)) = ((a⊥ ∪ (a ∩ b)) ∩ ((a ∩ b)⊥ ∪ a)) | |
4 | 1, 2, 3 | 3tr1 63 | . 2 ((a ∩ b) ≡0 a) = (a ≡0 (a ∩ b)) |
5 | nom20 313 | . 2 (a ≡0 (a ∩ b)) = (a →1 b) | |
6 | 4, 5 | ax-r2 36 | 1 ((a ∩ b) ≡0 a) = (a →1 b) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 ≡0 wid0 17 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i1 44 df-id0 49 df-le1 130 df-le2 131 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |