QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  nom31 GIF version

Theorem nom31 320
Description: Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. (Contributed by NM, 7-Feb-1999.)
Assertion
Ref Expression
nom31 ((ab) ≡1 a) = (a1 b)

Proof of Theorem nom31
StepHypRef Expression
1 nomb41 299 . . 3 (a4 (ab)) = ((ab) ≡1 a)
21ax-r1 35 . 2 ((ab) ≡1 a) = (a4 (ab))
3 nom24 317 . 2 (a4 (ab)) = (a1 b)
42, 3ax-r2 36 1 ((ab) ≡1 a) = (a1 b)
Colors of variables: term
Syntax hints:   = wb 1  wa 7  1 wi1 12  1 wid1 18  4 wid4 21
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-i1 44  df-id1 50  df-id4 53  df-le1 130  df-le2 131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator