Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > nomb41 | GIF version |
Description: Lemma for "Non-Orthomodular Models..." paper. (Contributed by NM, 7-Feb-1999.) |
Ref | Expression |
---|---|
nomb41 | (a ≡4 b) = (b ≡1 a) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-a2 31 | . . 3 (a⊥ ∪ b) = (b ∪ a⊥ ) | |
2 | ancom 74 | . . . 4 (a ∩ b) = (b ∩ a) | |
3 | 2 | lor 70 | . . 3 (b⊥ ∪ (a ∩ b)) = (b⊥ ∪ (b ∩ a)) |
4 | 1, 3 | 2an 79 | . 2 ((a⊥ ∪ b) ∩ (b⊥ ∪ (a ∩ b))) = ((b ∪ a⊥ ) ∩ (b⊥ ∪ (b ∩ a))) |
5 | df-id4 53 | . 2 (a ≡4 b) = ((a⊥ ∪ b) ∩ (b⊥ ∪ (a ∩ b))) | |
6 | df-id1 50 | . 2 (b ≡1 a) = ((b ∪ a⊥ ) ∩ (b⊥ ∪ (b ∩ a))) | |
7 | 4, 5, 6 | 3tr1 63 | 1 (a ≡4 b) = (b ≡1 a) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 ≡1 wid1 18 ≡4 wid4 21 |
This theorem was proved from axioms: ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-id1 50 df-id4 53 |
This theorem is referenced by: nomcon3 304 nomcon4 305 nom31 320 nom34 323 nom61 338 nom64 341 |
Copyright terms: Public domain | W3C validator |