QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  nom32 GIF version

Theorem nom32 321
Description: Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. (Contributed by NM, 7-Feb-1999.)
Assertion
Ref Expression
nom32 ((ab) ≡2 a) = (a1 b)

Proof of Theorem nom32
StepHypRef Expression
1 nomb32 300 . . 3 (a3 (ab)) = ((ab) ≡2 a)
21ax-r1 35 . 2 ((ab) ≡2 a) = (a3 (ab))
3 nom23 316 . 2 (a3 (ab)) = (a1 b)
42, 3ax-r2 36 1 ((ab) ≡2 a) = (a1 b)
Colors of variables: term
Syntax hints:   = wb 1  wa 7  1 wi1 12  2 wid2 19  3 wid3 20
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-t 41  df-i1 44  df-id2 51  df-id3 52  df-le1 130  df-le2 131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator