QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  nom65 GIF version

Theorem nom65 342
Description: Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. (Contributed by NM, 7-Feb-1999.)
Assertion
Ref Expression
nom65 (b ≡ (ab)) = (a2 b)

Proof of Theorem nom65
StepHypRef Expression
1 bicom 96 . 2 (b ≡ (ab)) = ((ab) ≡ b)
2 nom55 336 . 2 ((ab) ≡ b) = (a2 b)
31, 2ax-r2 36 1 (b ≡ (ab)) = (a2 b)
Colors of variables: term
Syntax hints:   = wb 1  tb 5  wo 6  2 wi2 13
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i1 44  df-i2 45
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator