Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > bicom | GIF version |
Description: Commutative law. (Contributed by NM, 10-Aug-1997.) |
Ref | Expression |
---|---|
bicom | (a ≡ b) = (b ≡ a) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 74 | . . 3 (a ∩ b) = (b ∩ a) | |
2 | ancom 74 | . . 3 (a⊥ ∩ b⊥ ) = (b⊥ ∩ a⊥ ) | |
3 | 1, 2 | 2or 72 | . 2 ((a ∩ b) ∪ (a⊥ ∩ b⊥ )) = ((b ∩ a) ∪ (b⊥ ∩ a⊥ )) |
4 | dfb 94 | . 2 (a ≡ b) = ((a ∩ b) ∪ (a⊥ ∩ b⊥ )) | |
5 | dfb 94 | . 2 (b ≡ a) = ((b ∩ a) ∪ (b⊥ ∩ a⊥ )) | |
6 | 3, 4, 5 | 3tr1 63 | 1 (a ≡ b) = (b ≡ a) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ≡ tb 5 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-b 39 df-a 40 |
This theorem is referenced by: rbi 98 wr1 197 wwfh1 216 wwfh2 217 ska12 240 nomcon5 306 nom35 324 nom55 336 nom65 342 ka4ot 435 ublemc2 729 mlaconj4 844 distid 887 oago3.29 889 oago3.21x 890 |
Copyright terms: Public domain | W3C validator |