Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > nom55 | GIF version |
Description: Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. (Contributed by NM, 7-Feb-1999.) |
Ref | Expression |
---|---|
nom55 | ((a ∪ b) ≡ b) = (a →2 b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nom25 318 | . 2 (b⊥ ≡ (b⊥ ∩ a⊥ )) = (b⊥ →1 a⊥ ) | |
2 | conb 122 | . . 3 ((a ∪ b) ≡ b) = ((a ∪ b)⊥ ≡ b⊥ ) | |
3 | bicom 96 | . . 3 ((a ∪ b)⊥ ≡ b⊥ ) = (b⊥ ≡ (a ∪ b)⊥ ) | |
4 | ancom 74 | . . . . . 6 (b⊥ ∩ a⊥ ) = (a⊥ ∩ b⊥ ) | |
5 | anor3 90 | . . . . . 6 (a⊥ ∩ b⊥ ) = (a ∪ b)⊥ | |
6 | 4, 5 | ax-r2 36 | . . . . 5 (b⊥ ∩ a⊥ ) = (a ∪ b)⊥ |
7 | 6 | ax-r1 35 | . . . 4 (a ∪ b)⊥ = (b⊥ ∩ a⊥ ) |
8 | 7 | lbi 97 | . . 3 (b⊥ ≡ (a ∪ b)⊥ ) = (b⊥ ≡ (b⊥ ∩ a⊥ )) |
9 | 2, 3, 8 | 3tr 65 | . 2 ((a ∪ b) ≡ b) = (b⊥ ≡ (b⊥ ∩ a⊥ )) |
10 | i2i1 267 | . 2 (a →2 b) = (b⊥ →1 a⊥ ) | |
11 | 1, 9, 10 | 3tr1 63 | 1 ((a ∪ b) ≡ b) = (a →2 b) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ≡ tb 5 ∪ wo 6 ∩ wa 7 →1 wi1 12 →2 wi2 13 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 |
This theorem is referenced by: nom65 342 |
Copyright terms: Public domain | W3C validator |