Proof of Theorem oa4to4u2
Step | Hyp | Ref
| Expression |
1 | | oa4to4u.1 |
. . 3
((e →1 d) ∩ (e
∪ (f ∩ (((e ∩ f) ∪
((e →1 d) ∩ (f
→1 d))) ∪ (((e ∩ g) ∪
((e →1 d) ∩ (g
→1 d))) ∩ ((f ∩ g) ∪
((f →1 d) ∩ (g
→1 d)))))))) ≤
(((e ∩ d) ∪ (f
∩ d)) ∪ (g ∩ d)) |
2 | | oa4to4u.2 |
. . 3
e = (a⊥ →1 d) |
3 | | oa4to4u3 |
. . 3
f = (b⊥ →1 d) |
4 | | oa4to4u.4 |
. . 3
g = (c⊥ →1 d) |
5 | 1, 2, 3, 4 | oa4to4u 973 |
. 2
((a →1 d) ∩ ((a⊥ →1 d) ∪ ((b⊥ →1 d) ∩ ((((a
→1 d) ∩ (b →1 d)) ∪ ((a⊥ →1 d) ∩ (b⊥ →1 d))) ∪ ((((a
→1 d) ∩ (c →1 d)) ∪ ((a⊥ →1 d) ∩ (c⊥ →1 d))) ∩ (((b
→1 d) ∩ (c →1 d)) ∪ ((b⊥ →1 d) ∩ (c⊥ →1 d)))))))) ≤ ((((a →1 d) ∩ (a⊥ →1 d)) ∪ ((b
→1 d) ∩ (b⊥ →1 d))) ∪ ((c
→1 d) ∩ (c⊥ →1 d))) |
6 | | u1lem8 776 |
. . . . 5
((a →1 d) ∩ (a⊥ →1 d)) = ((a ∩
d) ∪ (a⊥ ∩ d)) |
7 | | lear 161 |
. . . . . 6
(a ∩ d) ≤ d |
8 | | lear 161 |
. . . . . 6
(a⊥ ∩ d) ≤ d |
9 | 7, 8 | lel2or 170 |
. . . . 5
((a ∩ d) ∪ (a⊥ ∩ d)) ≤ d |
10 | 6, 9 | bltr 138 |
. . . 4
((a →1 d) ∩ (a⊥ →1 d)) ≤ d |
11 | | u1lem8 776 |
. . . . 5
((b →1 d) ∩ (b⊥ →1 d)) = ((b ∩
d) ∪ (b⊥ ∩ d)) |
12 | | lear 161 |
. . . . . 6
(b ∩ d) ≤ d |
13 | | lear 161 |
. . . . . 6
(b⊥ ∩ d) ≤ d |
14 | 12, 13 | lel2or 170 |
. . . . 5
((b ∩ d) ∪ (b⊥ ∩ d)) ≤ d |
15 | 11, 14 | bltr 138 |
. . . 4
((b →1 d) ∩ (b⊥ →1 d)) ≤ d |
16 | 10, 15 | lel2or 170 |
. . 3
(((a →1 d) ∩ (a⊥ →1 d)) ∪ ((b
→1 d) ∩ (b⊥ →1 d))) ≤ d |
17 | | u1lem8 776 |
. . . 4
((c →1 d) ∩ (c⊥ →1 d)) = ((c ∩
d) ∪ (c⊥ ∩ d)) |
18 | | lear 161 |
. . . . 5
(c ∩ d) ≤ d |
19 | | lear 161 |
. . . . 5
(c⊥ ∩ d) ≤ d |
20 | 18, 19 | lel2or 170 |
. . . 4
((c ∩ d) ∪ (c⊥ ∩ d)) ≤ d |
21 | 17, 20 | bltr 138 |
. . 3
((c →1 d) ∩ (c⊥ →1 d)) ≤ d |
22 | 16, 21 | lel2or 170 |
. 2
((((a →1 d) ∩ (a⊥ →1 d)) ∪ ((b
→1 d) ∩ (b⊥ →1 d))) ∪ ((c
→1 d) ∩ (c⊥ →1 d))) ≤ d |
23 | 5, 22 | letr 137 |
1
((a →1 d) ∩ ((a⊥ →1 d) ∪ ((b⊥ →1 d) ∩ ((((a
→1 d) ∩ (b →1 d)) ∪ ((a⊥ →1 d) ∩ (b⊥ →1 d))) ∪ ((((a
→1 d) ∩ (c →1 d)) ∪ ((a⊥ →1 d) ∩ (c⊥ →1 d))) ∩ (((b
→1 d) ∩ (c →1 d)) ∪ ((b⊥ →1 d) ∩ (c⊥ →1 d)))))))) ≤ d |