Proof of Theorem u1lem8
Step | Hyp | Ref
| Expression |
1 | | df-i1 44 |
. . 3
(a →1 b) = (a⊥ ∪ (a ∩ b)) |
2 | | df-i1 44 |
. . . 4
(a⊥ →1
b) = (a⊥ ⊥ ∪
(a⊥ ∩ b)) |
3 | | ax-a1 30 |
. . . . . 6
a = a⊥
⊥ |
4 | 3 | ax-r5 38 |
. . . . 5
(a ∪ (a⊥ ∩ b)) = (a⊥ ⊥ ∪
(a⊥ ∩ b)) |
5 | 4 | ax-r1 35 |
. . . 4
(a⊥
⊥ ∪ (a⊥ ∩ b)) = (a ∪
(a⊥ ∩ b)) |
6 | 2, 5 | ax-r2 36 |
. . 3
(a⊥ →1
b) = (a ∪ (a⊥ ∩ b)) |
7 | 1, 6 | 2an 79 |
. 2
((a →1 b) ∩ (a⊥ →1 b)) = ((a⊥ ∪ (a ∩ b))
∩ (a ∪ (a⊥ ∩ b))) |
8 | | comor1 461 |
. . . 4
(a ∪ (a⊥ ∩ b)) C a |
9 | 8 | comcom2 183 |
. . 3
(a ∪ (a⊥ ∩ b)) C a⊥ |
10 | | coman1 185 |
. . . . 5
(a ∩ b) C a |
11 | 10 | comcom2 183 |
. . . . . 6
(a ∩ b) C a⊥ |
12 | | coman2 186 |
. . . . . 6
(a ∩ b) C b |
13 | 11, 12 | com2an 484 |
. . . . 5
(a ∩ b) C (a⊥ ∩ b) |
14 | 10, 13 | com2or 483 |
. . . 4
(a ∩ b) C (a
∪ (a⊥ ∩ b)) |
15 | 14 | comcom 453 |
. . 3
(a ∪ (a⊥ ∩ b)) C (a
∩ b) |
16 | 9, 15 | fh1r 473 |
. 2
((a⊥ ∪
(a ∩ b)) ∩ (a
∪ (a⊥ ∩ b))) = ((a⊥ ∩ (a ∪ (a⊥ ∩ b))) ∪ ((a
∩ b) ∩ (a ∪ (a⊥ ∩ b)))) |
17 | | omlan 448 |
. . . 4
(a⊥ ∩ (a ∪ (a⊥ ∩ b))) = (a⊥ ∩ b) |
18 | | lea 160 |
. . . . . 6
(a ∩ b) ≤ a |
19 | | leo 158 |
. . . . . 6
a ≤ (a ∪ (a⊥ ∩ b)) |
20 | 18, 19 | letr 137 |
. . . . 5
(a ∩ b) ≤ (a ∪
(a⊥ ∩ b)) |
21 | 20 | df2le2 136 |
. . . 4
((a ∩ b) ∩ (a
∪ (a⊥ ∩ b))) = (a ∩
b) |
22 | 17, 21 | 2or 72 |
. . 3
((a⊥ ∩
(a ∪ (a⊥ ∩ b))) ∪ ((a
∩ b) ∩ (a ∪ (a⊥ ∩ b)))) = ((a⊥ ∩ b) ∪ (a
∩ b)) |
23 | | ax-a2 31 |
. . 3
((a⊥ ∩ b) ∪ (a
∩ b)) = ((a ∩ b) ∪
(a⊥ ∩ b)) |
24 | 22, 23 | ax-r2 36 |
. 2
((a⊥ ∩
(a ∪ (a⊥ ∩ b))) ∪ ((a
∩ b) ∩ (a ∪ (a⊥ ∩ b)))) = ((a
∩ b) ∪ (a⊥ ∩ b)) |
25 | 7, 16, 24 | 3tr 65 |
1
((a →1 b) ∩ (a⊥ →1 b)) = ((a ∩
b) ∪ (a⊥ ∩ b)) |