| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > oa6to4h1 | GIF version | ||
| Description: Satisfaction of 6-variable OA law hypothesis. (Contributed by NM, 22-Dec-1998.) |
| Ref | Expression |
|---|---|
| oa6to4.1 | b⊥ = (a →1 g)⊥ |
| oa6to4.2 | d⊥ = (c →1 g)⊥ |
| oa6to4.3 | f⊥ = (e →1 g)⊥ |
| Ref | Expression |
|---|---|
| oa6to4h1 | a⊥ ≤ b⊥ ⊥ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leo 158 | . 2 a⊥ ≤ (a⊥ ∪ (a ∩ g)) | |
| 2 | oa6to4.1 | . . . . 5 b⊥ = (a →1 g)⊥ | |
| 3 | df-i1 44 | . . . . . 6 (a →1 g) = (a⊥ ∪ (a ∩ g)) | |
| 4 | 3 | ax-r4 37 | . . . . 5 (a →1 g)⊥ = (a⊥ ∪ (a ∩ g))⊥ |
| 5 | 2, 4 | ax-r2 36 | . . . 4 b⊥ = (a⊥ ∪ (a ∩ g))⊥ |
| 6 | 5 | ax-r1 35 | . . 3 (a⊥ ∪ (a ∩ g))⊥ = b⊥ |
| 7 | 6 | con3 68 | . 2 (a⊥ ∪ (a ∩ g)) = b⊥ ⊥ |
| 8 | 1, 7 | lbtr 139 | 1 a⊥ ≤ b⊥ ⊥ |
| Colors of variables: term |
| Syntax hints: = wb 1 ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-i1 44 df-le1 130 df-le2 131 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |