Proof of Theorem oa6fromdualn
Step | Hyp | Ref
| Expression |
1 | | oa6fromdualn.1 |
. . 3
(b ∩ (a ∪ (c ∩
(((a ∩ c) ∪ (b
∩ d)) ∪ (((a ∩ e) ∪
(b ∩ f)) ∩ ((c
∩ e) ∪ (d ∩ f)))))))
≤ (((a ∩ b) ∪ (c
∩ d)) ∪ (e ∩ f)) |
2 | | ax-a1 30 |
. . . 4
b = b⊥
⊥ |
3 | | ax-a1 30 |
. . . . 5
a = a⊥
⊥ |
4 | | ax-a1 30 |
. . . . . 6
c = c⊥
⊥ |
5 | 3, 4 | 2an 79 |
. . . . . . . 8
(a ∩ c) = (a⊥ ⊥ ∩
c⊥ ⊥
) |
6 | | ax-a1 30 |
. . . . . . . . 9
d = d⊥
⊥ |
7 | 2, 6 | 2an 79 |
. . . . . . . 8
(b ∩ d) = (b⊥ ⊥ ∩
d⊥ ⊥
) |
8 | 5, 7 | 2or 72 |
. . . . . . 7
((a ∩ c) ∪ (b
∩ d)) = ((a⊥ ⊥ ∩
c⊥ ⊥ )
∪ (b⊥
⊥ ∩ d⊥ ⊥
)) |
9 | | ax-a1 30 |
. . . . . . . . . 10
e = e⊥
⊥ |
10 | 3, 9 | 2an 79 |
. . . . . . . . 9
(a ∩ e) = (a⊥ ⊥ ∩
e⊥ ⊥
) |
11 | | ax-a1 30 |
. . . . . . . . . 10
f = f⊥
⊥ |
12 | 2, 11 | 2an 79 |
. . . . . . . . 9
(b ∩ f) = (b⊥ ⊥ ∩
f⊥ ⊥
) |
13 | 10, 12 | 2or 72 |
. . . . . . . 8
((a ∩ e) ∪ (b
∩ f)) = ((a⊥ ⊥ ∩
e⊥ ⊥ )
∪ (b⊥
⊥ ∩ f⊥ ⊥
)) |
14 | 4, 9 | 2an 79 |
. . . . . . . . 9
(c ∩ e) = (c⊥ ⊥ ∩
e⊥ ⊥
) |
15 | 6, 11 | 2an 79 |
. . . . . . . . 9
(d ∩ f) = (d⊥ ⊥ ∩
f⊥ ⊥
) |
16 | 14, 15 | 2or 72 |
. . . . . . . 8
((c ∩ e) ∪ (d
∩ f)) = ((c⊥ ⊥ ∩
e⊥ ⊥ )
∪ (d⊥
⊥ ∩ f⊥ ⊥
)) |
17 | 13, 16 | 2an 79 |
. . . . . . 7
(((a ∩ e) ∪ (b
∩ f)) ∩ ((c ∩ e) ∪
(d ∩ f))) = (((a⊥ ⊥ ∩
e⊥ ⊥ )
∪ (b⊥
⊥ ∩ f⊥ ⊥ )) ∩
((c⊥ ⊥
∩ e⊥
⊥ ) ∪ (d⊥ ⊥ ∩
f⊥ ⊥
))) |
18 | 8, 17 | 2or 72 |
. . . . . 6
(((a ∩ c) ∪ (b
∩ d)) ∪ (((a ∩ e) ∪
(b ∩ f)) ∩ ((c
∩ e) ∪ (d ∩ f)))) =
(((a⊥ ⊥
∩ c⊥
⊥ ) ∪ (b⊥ ⊥ ∩
d⊥ ⊥ ))
∪ (((a⊥
⊥ ∩ e⊥ ⊥ ) ∪
(b⊥ ⊥
∩ f⊥
⊥ )) ∩ ((c⊥ ⊥ ∩
e⊥ ⊥ )
∪ (d⊥
⊥ ∩ f⊥ ⊥
)))) |
19 | 4, 18 | 2an 79 |
. . . . 5
(c ∩ (((a ∩ c) ∪
(b ∩ d)) ∪ (((a
∩ e) ∪ (b ∩ f))
∩ ((c ∩ e) ∪ (d
∩ f))))) = (c⊥ ⊥ ∩
(((a⊥ ⊥
∩ c⊥
⊥ ) ∪ (b⊥ ⊥ ∩
d⊥ ⊥ ))
∪ (((a⊥
⊥ ∩ e⊥ ⊥ ) ∪
(b⊥ ⊥
∩ f⊥
⊥ )) ∩ ((c⊥ ⊥ ∩
e⊥ ⊥ )
∪ (d⊥
⊥ ∩ f⊥ ⊥
))))) |
20 | 3, 19 | 2or 72 |
. . . 4
(a ∪ (c ∩ (((a
∩ c) ∪ (b ∩ d))
∪ (((a ∩ e) ∪ (b
∩ f)) ∩ ((c ∩ e) ∪
(d ∩ f)))))) = (a⊥ ⊥ ∪
(c⊥ ⊥
∩ (((a⊥
⊥ ∩ c⊥ ⊥ ) ∪
(b⊥ ⊥
∩ d⊥
⊥ )) ∪ (((a⊥ ⊥ ∩
e⊥ ⊥ )
∪ (b⊥
⊥ ∩ f⊥ ⊥ )) ∩
((c⊥ ⊥
∩ e⊥
⊥ ) ∪ (d⊥ ⊥ ∩
f⊥ ⊥
)))))) |
21 | 2, 20 | 2an 79 |
. . 3
(b ∩ (a ∪ (c ∩
(((a ∩ c) ∪ (b
∩ d)) ∪ (((a ∩ e) ∪
(b ∩ f)) ∩ ((c
∩ e) ∪ (d ∩ f)))))))
= (b⊥ ⊥
∩ (a⊥
⊥ ∪ (c⊥ ⊥ ∩
(((a⊥ ⊥
∩ c⊥
⊥ ) ∪ (b⊥ ⊥ ∩
d⊥ ⊥ ))
∪ (((a⊥
⊥ ∩ e⊥ ⊥ ) ∪
(b⊥ ⊥
∩ f⊥
⊥ )) ∩ ((c⊥ ⊥ ∩
e⊥ ⊥ )
∪ (d⊥
⊥ ∩ f⊥ ⊥
))))))) |
22 | 3, 2 | 2an 79 |
. . . . 5
(a ∩ b) = (a⊥ ⊥ ∩
b⊥ ⊥
) |
23 | 4, 6 | 2an 79 |
. . . . 5
(c ∩ d) = (c⊥ ⊥ ∩
d⊥ ⊥
) |
24 | 22, 23 | 2or 72 |
. . . 4
((a ∩ b) ∪ (c
∩ d)) = ((a⊥ ⊥ ∩
b⊥ ⊥ )
∪ (c⊥
⊥ ∩ d⊥ ⊥
)) |
25 | 9, 11 | 2an 79 |
. . . 4
(e ∩ f) = (e⊥ ⊥ ∩
f⊥ ⊥
) |
26 | 24, 25 | 2or 72 |
. . 3
(((a ∩ b) ∪ (c
∩ d)) ∪ (e ∩ f)) =
(((a⊥ ⊥
∩ b⊥
⊥ ) ∪ (c⊥ ⊥ ∩
d⊥ ⊥ ))
∪ (e⊥
⊥ ∩ f⊥ ⊥
)) |
27 | 1, 21, 26 | le3tr2 141 |
. 2
(b⊥
⊥ ∩ (a⊥ ⊥ ∪
(c⊥ ⊥
∩ (((a⊥
⊥ ∩ c⊥ ⊥ ) ∪
(b⊥ ⊥
∩ d⊥
⊥ )) ∪ (((a⊥ ⊥ ∩
e⊥ ⊥ )
∪ (b⊥
⊥ ∩ f⊥ ⊥ )) ∩
((c⊥ ⊥
∩ e⊥
⊥ ) ∪ (d⊥ ⊥ ∩
f⊥ ⊥
))))))) ≤ (((a⊥
⊥ ∩ b⊥ ⊥ ) ∪
(c⊥ ⊥
∩ d⊥
⊥ )) ∪ (e⊥ ⊥ ∩
f⊥ ⊥
)) |
28 | 27 | oa6fromdual 953 |
1
(((a⊥ ∪
b⊥ ) ∩ (c⊥ ∪ d⊥ )) ∩ (e⊥ ∪ f⊥ )) ≤ (b⊥ ∪ (a⊥ ∩ (c⊥ ∪ (((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∪ ((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ ))))))) |