Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > oa6to4h3 | GIF version |
Description: Satisfaction of 6-variable OA law hypothesis. (Contributed by NM, 22-Dec-1998.) |
Ref | Expression |
---|---|
oa6to4.1 | b⊥ = (a →1 g)⊥ |
oa6to4.2 | d⊥ = (c →1 g)⊥ |
oa6to4.3 | f⊥ = (e →1 g)⊥ |
Ref | Expression |
---|---|
oa6to4h3 | e⊥ ≤ f⊥ ⊥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leo 158 | . 2 e⊥ ≤ (e⊥ ∪ (e ∩ g)) | |
2 | oa6to4.3 | . . . . 5 f⊥ = (e →1 g)⊥ | |
3 | df-i1 44 | . . . . . 6 (e →1 g) = (e⊥ ∪ (e ∩ g)) | |
4 | 3 | ax-r4 37 | . . . . 5 (e →1 g)⊥ = (e⊥ ∪ (e ∩ g))⊥ |
5 | 2, 4 | ax-r2 36 | . . . 4 f⊥ = (e⊥ ∪ (e ∩ g))⊥ |
6 | 5 | ax-r1 35 | . . 3 (e⊥ ∪ (e ∩ g))⊥ = f⊥ |
7 | 6 | con3 68 | . 2 (e⊥ ∪ (e ∩ g)) = f⊥ ⊥ |
8 | 1, 7 | lbtr 139 | 1 e⊥ ≤ f⊥ ⊥ |
Colors of variables: term |
Syntax hints: = wb 1 ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-i1 44 df-le1 130 df-le2 131 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |