Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > oadist2 | GIF version |
Description: Distributive inference derived from OA. (Contributed by NM, 17-Nov-1998.) |
Ref | Expression |
---|---|
oadist2.1 | (d ∪ ((b ∪ c) →2 ((a →2 b) ∩ (a →2 c)))) = ((b ∪ c) →0 ((a →2 b) ∩ (a →2 c))) |
Ref | Expression |
---|---|
oadist2 | ((a →2 b) ∩ (d ∪ ((b ∪ c) →2 ((a →2 b) ∩ (a →2 c))))) = (((a →2 b) ∩ d) ∪ ((a →2 b) ∩ ((b ∪ c) →2 ((a →2 b) ∩ (a →2 c))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oadist2.1 | . . 3 (d ∪ ((b ∪ c) →2 ((a →2 b) ∩ (a →2 c)))) = ((b ∪ c) →0 ((a →2 b) ∩ (a →2 c))) | |
2 | 1 | bile 142 | . 2 (d ∪ ((b ∪ c) →2 ((a →2 b) ∩ (a →2 c)))) ≤ ((b ∪ c) →0 ((a →2 b) ∩ (a →2 c))) |
3 | 2 | oadist2a 1007 | 1 ((a →2 b) ∩ (d ∪ ((b ∪ c) →2 ((a →2 b) ∩ (a →2 c))))) = (((a →2 b) ∩ d) ∪ ((a →2 b) ∩ ((b ∪ c) →2 ((a →2 b) ∩ (a →2 c))))) |
Colors of variables: term |
Syntax hints: = wb 1 ∪ wo 6 ∩ wa 7 →0 wi0 11 →2 wi2 13 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-3oa 998 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i0 43 df-i1 44 df-i2 45 df-le1 130 df-le2 131 |
This theorem is referenced by: oadist12 1010 |
Copyright terms: Public domain | W3C validator |