QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  ska2b GIF version

Theorem ska2b 227
Description: Axiom KA2b in Pavicic and Megill, 1998. (Contributed by NM, 9-Nov-1998.)
Assertion
Ref Expression
ska2b (((ac) ≡ (bc)) ≡ ((ac ) ≡ (bc ) )) = 1

Proof of Theorem ska2b
StepHypRef Expression
1 oran 87 . . 3 (ac) = (ac )
2 oran 87 . . 3 (bc) = (bc )
31, 22bi 99 . 2 ((ac) ≡ (bc)) = ((ac ) ≡ (bc ) )
43bi1 118 1 (((ac) ≡ (bc)) ≡ ((ac ) ≡ (bc ) )) = 1
Colors of variables: term
Syntax hints:   = wb 1   wn 4  tb 5  wo 6  wa 7  1wt 8
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator