Proof of Theorem ka4lemo
| Step | Hyp | Ref
| Expression |
| 1 | | le1 146 |
. 2
((a ∪ b) ∪ ((a
∪ c) ≡ (b ∪ c)))
≤ 1 |
| 2 | | df-t 41 |
. . 3
1 = (((a ∪ b) ∪ c)
∪ ((a ∪ b) ∪ c)⊥ ) |
| 3 | | leo 158 |
. . . . . . 7
c ≤ (c ∪ (a ∩
b)) |
| 4 | | ax-a2 31 |
. . . . . . 7
(c ∪ (a ∩ b)) =
((a ∩ b) ∪ c) |
| 5 | 3, 4 | lbtr 139 |
. . . . . 6
c ≤ ((a ∩ b) ∪
c) |
| 6 | 5 | lelor 166 |
. . . . 5
((a ∪ b) ∪ c) ≤
((a ∪ b) ∪ ((a
∩ b) ∪ c)) |
| 7 | 6 | leror 152 |
. . . 4
(((a ∪ b) ∪ c)
∪ ((a ∪ b) ∪ c)⊥ ) ≤ (((a ∪ b) ∪
((a ∩ b) ∪ c))
∪ ((a ∪ b) ∪ c)⊥ ) |
| 8 | | ax-a3 32 |
. . . . 5
(((a ∪ b) ∪ ((a
∩ b) ∪ c)) ∪ ((a
∪ b) ∪ c)⊥ ) = ((a ∪ b) ∪
(((a ∩ b) ∪ c)
∪ ((a ∪ b) ∪ c)⊥ )) |
| 9 | | ledio 176 |
. . . . . . . . 9
(c ∪ (a ∩ b)) ≤
((c ∪ a) ∩ (c
∪ b)) |
| 10 | | ax-a2 31 |
. . . . . . . . 9
((a ∩ b) ∪ c) =
(c ∪ (a ∩ b)) |
| 11 | | ax-a2 31 |
. . . . . . . . . 10
(a ∪ c) = (c ∪
a) |
| 12 | | ax-a2 31 |
. . . . . . . . . 10
(b ∪ c) = (c ∪
b) |
| 13 | 11, 12 | 2an 79 |
. . . . . . . . 9
((a ∪ c) ∩ (b
∪ c)) = ((c ∪ a) ∩
(c ∪ b)) |
| 14 | 9, 10, 13 | le3tr1 140 |
. . . . . . . 8
((a ∩ b) ∪ c) ≤
((a ∪ c) ∩ (b
∪ c)) |
| 15 | 14 | leror 152 |
. . . . . . 7
(((a ∩ b) ∪ c)
∪ ((a ∪ b) ∪ c)⊥ ) ≤ (((a ∪ c) ∩
(b ∪ c)) ∪ ((a
∪ b) ∪ c)⊥ ) |
| 16 | | dfb 94 |
. . . . . . . . 9
((a ∪ c) ≡ (b
∪ c)) = (((a ∪ c) ∩
(b ∪ c)) ∪ ((a
∪ c)⊥ ∩ (b ∪ c)⊥ )) |
| 17 | | oran 87 |
. . . . . . . . . . . . 13
(a ∪ c) = (a⊥ ∩ c⊥
)⊥ |
| 18 | 17 | con2 67 |
. . . . . . . . . . . 12
(a ∪ c)⊥ = (a⊥ ∩ c⊥ ) |
| 19 | | oran 87 |
. . . . . . . . . . . . 13
(b ∪ c) = (b⊥ ∩ c⊥
)⊥ |
| 20 | 19 | con2 67 |
. . . . . . . . . . . 12
(b ∪ c)⊥ = (b⊥ ∩ c⊥ ) |
| 21 | 18, 20 | 2an 79 |
. . . . . . . . . . 11
((a ∪ c)⊥ ∩ (b ∪ c)⊥ ) = ((a⊥ ∩ c⊥ ) ∩ (b⊥ ∩ c⊥ )) |
| 22 | | anor1 88 |
. . . . . . . . . . . 12
((a⊥ ∩ b⊥ ) ∩ c⊥ ) = ((a⊥ ∩ b⊥ )⊥ ∪
c)⊥ |
| 23 | | anandir 115 |
. . . . . . . . . . . . 13
((a⊥ ∩ b⊥ ) ∩ c⊥ ) = ((a⊥ ∩ c⊥ ) ∩ (b⊥ ∩ c⊥ )) |
| 24 | 23 | ax-r1 35 |
. . . . . . . . . . . 12
((a⊥ ∩ c⊥ ) ∩ (b⊥ ∩ c⊥ )) = ((a⊥ ∩ b⊥ ) ∩ c⊥ ) |
| 25 | | oran 87 |
. . . . . . . . . . . . . 14
(a ∪ b) = (a⊥ ∩ b⊥
)⊥ |
| 26 | 25 | ax-r5 38 |
. . . . . . . . . . . . 13
((a ∪ b) ∪ c) =
((a⊥ ∩ b⊥ )⊥ ∪
c) |
| 27 | 26 | ax-r4 37 |
. . . . . . . . . . . 12
((a ∪ b) ∪ c)⊥ = ((a⊥ ∩ b⊥ )⊥ ∪
c)⊥ |
| 28 | 22, 24, 27 | 3tr1 63 |
. . . . . . . . . . 11
((a⊥ ∩ c⊥ ) ∩ (b⊥ ∩ c⊥ )) = ((a ∪ b) ∪
c)⊥ |
| 29 | 21, 28 | ax-r2 36 |
. . . . . . . . . 10
((a ∪ c)⊥ ∩ (b ∪ c)⊥ ) = ((a ∪ b) ∪
c)⊥ |
| 30 | 29 | lor 70 |
. . . . . . . . 9
(((a ∪ c) ∩ (b
∪ c)) ∪ ((a ∪ c)⊥ ∩ (b ∪ c)⊥ )) = (((a ∪ c) ∩
(b ∪ c)) ∪ ((a
∪ b) ∪ c)⊥ ) |
| 31 | 16, 30 | ax-r2 36 |
. . . . . . . 8
((a ∪ c) ≡ (b
∪ c)) = (((a ∪ c) ∩
(b ∪ c)) ∪ ((a
∪ b) ∪ c)⊥ ) |
| 32 | 31 | ax-r1 35 |
. . . . . . 7
(((a ∪ c) ∩ (b
∪ c)) ∪ ((a ∪ b) ∪
c)⊥ ) = ((a ∪ c)
≡ (b ∪ c)) |
| 33 | 15, 32 | lbtr 139 |
. . . . . 6
(((a ∩ b) ∪ c)
∪ ((a ∪ b) ∪ c)⊥ ) ≤ ((a ∪ c)
≡ (b ∪ c)) |
| 34 | 33 | lelor 166 |
. . . . 5
((a ∪ b) ∪ (((a
∩ b) ∪ c) ∪ ((a
∪ b) ∪ c)⊥ )) ≤ ((a ∪ b) ∪
((a ∪ c) ≡ (b
∪ c))) |
| 35 | 8, 34 | bltr 138 |
. . . 4
(((a ∪ b) ∪ ((a
∩ b) ∪ c)) ∪ ((a
∪ b) ∪ c)⊥ ) ≤ ((a ∪ b) ∪
((a ∪ c) ≡ (b
∪ c))) |
| 36 | 7, 35 | letr 137 |
. . 3
(((a ∪ b) ∪ c)
∪ ((a ∪ b) ∪ c)⊥ ) ≤ ((a ∪ b) ∪
((a ∪ c) ≡ (b
∪ c))) |
| 37 | 2, 36 | bltr 138 |
. 2
1 ≤ ((a ∪ b) ∪ ((a
∪ c) ≡ (b ∪ c))) |
| 38 | 1, 37 | lebi 145 |
1
((a ∪ b) ∪ ((a
∪ c) ≡ (b ∪ c))) =
1 |