QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  2bi GIF version

Theorem 2bi 99
Description: Join both sides with biconditional. (Contributed by NM, 10-Aug-1997.)
Hypotheses
Ref Expression
2bi.1 a = b
2bi.2 c = d
Assertion
Ref Expression
2bi (ac) = (bd)

Proof of Theorem 2bi
StepHypRef Expression
1 2bi.2 . . 3 c = d
21lbi 97 . 2 (ac) = (ad)
3 2bi.1 . . 3 a = b
43rbi 98 . 2 (ad) = (bd)
52, 4ax-r2 36 1 (ac) = (bd)
Colors of variables: term
Syntax hints:   = wb 1  tb 5
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-b 39  df-a 40
This theorem is referenced by:  wwfh3  218  wwfh4  219  ska2a  226  ska2b  227  ka4lem  229  wlor  368  wran  369  wlan  370  wom2  434  u3lemax4  796  mlaconj4  844
  Copyright terms: Public domain W3C validator