Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > skmp3 | GIF version |
Description: Soundness proof for KMP3. (Contributed by NM, 2-Nov-1997.) |
Ref | Expression |
---|---|
skmp3.1 | a = 1 |
skmp3.2 | (a →3 b) = 1 |
Ref | Expression |
---|---|
skmp3 | b = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | skmp3.1 | . 2 a = 1 | |
2 | skmp3.2 | . . 3 (a →3 b) = 1 | |
3 | ska15 244 | . . 3 ((a →3 b)⊥ ∪ (a⊥ ∪ b)) = 1 | |
4 | 2, 3 | skr0 242 | . 2 (a⊥ ∪ b) = 1 |
5 | 1, 4 | skr0 242 | 1 b = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 1wt 8 →3 wi3 14 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i3 46 df-le1 130 df-le2 131 |
This theorem is referenced by: i0i3tr 541 i3i0tr 542 i3th6 548 |
Copyright terms: Public domain | W3C validator |