| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > skr0 | GIF version | ||
| Description: Soundness theorem for Kalmbach's quantum propositional logic axiom KR0. (Contributed by NM, 30-Aug-1997.) |
| Ref | Expression |
|---|---|
| skr0.1 | a = 1 |
| skr0.2 | (a⊥ ∪ b) = 1 |
| Ref | Expression |
|---|---|
| skr0 | b = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-a2 31 | . . 3 (b ∪ 0) = (0 ∪ b) | |
| 2 | or0 102 | . . . 4 (b ∪ 0) = b | |
| 3 | 2 | ax-r1 35 | . . 3 b = (b ∪ 0) |
| 4 | skr0.1 | . . . . . 6 a = 1 | |
| 5 | 4 | ax-r4 37 | . . . . 5 a⊥ = 1⊥ |
| 6 | df-f 42 | . . . . . 6 0 = 1⊥ | |
| 7 | 6 | ax-r1 35 | . . . . 5 1⊥ = 0 |
| 8 | 5, 7 | ax-r2 36 | . . . 4 a⊥ = 0 |
| 9 | 8 | ax-r5 38 | . . 3 (a⊥ ∪ b) = (0 ∪ b) |
| 10 | 1, 3, 9 | 3tr1 63 | . 2 b = (a⊥ ∪ b) |
| 11 | skr0.2 | . 2 (a⊥ ∪ b) = 1 | |
| 12 | 10, 11 | ax-r2 36 | 1 b = 1 |
| Colors of variables: term |
| Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 1wt 8 0wf 9 |
| This theorem was proved from axioms: ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-t 41 df-f 42 |
| This theorem is referenced by: skmp3 245 wql2lem3 290 wql2lem4 291 id5id0 352 wr5-2v 366 lem3.3.2 1046 wdwom 1106 |
| Copyright terms: Public domain | W3C validator |