| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > i3th6 | GIF version | ||
| Description: Theorem for Kalmbach implication. (Contributed by NM, 16-Nov-1997.) |
| Ref | Expression |
|---|---|
| i3th6 | ((a →3 (a →3 (a →3 b))) →3 (a →3 (a →3 b))) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i3abs1 522 | . . 3 (a →3 (a →3 (a →3 b))) = (a →3 (a →3 b)) | |
| 2 | 1 | bi1 118 | . 2 ((a →3 (a →3 (a →3 b))) ≡ (a →3 (a →3 b))) = 1 |
| 3 | bii3 516 | . 2 (((a →3 (a →3 (a →3 b))) ≡ (a →3 (a →3 b))) →3 ((a →3 (a →3 (a →3 b))) →3 (a →3 (a →3 b)))) = 1 | |
| 4 | 2, 3 | skmp3 245 | 1 ((a →3 (a →3 (a →3 b))) →3 (a →3 (a →3 b))) = 1 |
| Colors of variables: term |
| Syntax hints: = wb 1 ≡ tb 5 1wt 8 →3 wi3 14 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i3 46 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |