Proof of Theorem testmod1
Step | Hyp | Ref
| Expression |
1 | | testmod 1213 |
. 2
(((c ∪ a) ∪ ((b
∪ c) ∩ (d ∪ a)))
∩ (a ∪ (b ∩ (d ∪
((a ∪ c) ∩ (b
∪ d)))))) = ((b ∩ ((((a
∪ c) ∪ ((b ∪ c) ∩
(d ∪ a))) ∩ d)
∪ ((a ∪ c) ∩ (b
∪ d)))) ∪ a) |
2 | | orcom 73 |
. . 3
((b ∩ ((((a ∪ c) ∪
((b ∪ c) ∩ (d
∪ a))) ∩ d) ∪ ((a
∪ c) ∩ (b ∪ d))))
∪ a) = (a ∪ (b ∩
((((a ∪ c) ∪ ((b
∪ c) ∩ (d ∪ a)))
∩ d) ∪ ((a ∪ c) ∩
(b ∪ d))))) |
3 | | orcom 73 |
. . . . . 6
((((a ∪ c) ∪ ((b
∪ c) ∩ (d ∪ a)))
∩ d) ∪ ((a ∪ c) ∩
(b ∪ d))) = (((a
∪ c) ∩ (b ∪ d))
∪ (((a ∪ c) ∪ ((b
∪ c) ∩ (d ∪ a)))
∩ d)) |
4 | | ancom 74 |
. . . . . . 7
(((a ∪ c) ∪ ((b
∪ c) ∩ (d ∪ a)))
∩ d) = (d ∩ ((a
∪ c) ∪ ((b ∪ c) ∩
(d ∪ a)))) |
5 | 4 | lor 70 |
. . . . . 6
(((a ∪ c) ∩ (b
∪ d)) ∪ (((a ∪ c) ∪
((b ∪ c) ∩ (d
∪ a))) ∩ d)) = (((a ∪
c) ∩ (b ∪ d))
∪ (d ∩ ((a ∪ c) ∪
((b ∪ c) ∩ (d
∪ a))))) |
6 | 3, 5 | tr 62 |
. . . . 5
((((a ∪ c) ∪ ((b
∪ c) ∩ (d ∪ a)))
∩ d) ∪ ((a ∪ c) ∩
(b ∪ d))) = (((a
∪ c) ∩ (b ∪ d))
∪ (d ∩ ((a ∪ c) ∪
((b ∪ c) ∩ (d
∪ a))))) |
7 | 6 | lan 77 |
. . . 4
(b ∩ ((((a ∪ c) ∪
((b ∪ c) ∩ (d
∪ a))) ∩ d) ∪ ((a
∪ c) ∩ (b ∪ d)))) =
(b ∩ (((a ∪ c) ∩
(b ∪ d)) ∪ (d
∩ ((a ∪ c) ∪ ((b
∪ c) ∩ (d ∪ a)))))) |
8 | 7 | lor 70 |
. . 3
(a ∪ (b ∩ ((((a
∪ c) ∪ ((b ∪ c) ∩
(d ∪ a))) ∩ d)
∪ ((a ∪ c) ∩ (b
∪ d))))) = (a ∪ (b ∩
(((a ∪ c) ∩ (b
∪ d)) ∪ (d ∩ ((a
∪ c) ∪ ((b ∪ c) ∩
(d ∪ a))))))) |
9 | 2, 8 | tr 62 |
. 2
((b ∩ ((((a ∪ c) ∪
((b ∪ c) ∩ (d
∪ a))) ∩ d) ∪ ((a
∪ c) ∩ (b ∪ d))))
∪ a) = (a ∪ (b ∩
(((a ∪ c) ∩ (b
∪ d)) ∪ (d ∩ ((a
∪ c) ∪ ((b ∪ c) ∩
(d ∪ a))))))) |
10 | 1, 9 | tr 62 |
1
(((c ∪ a) ∪ ((b
∪ c) ∩ (d ∪ a)))
∩ (a ∪ (b ∩ (d ∪
((a ∪ c) ∩ (b
∪ d)))))) = (a ∪ (b ∩
(((a ∪ c) ∩ (b
∪ d)) ∪ (d ∩ ((a
∪ c) ∪ ((b ∪ c) ∩
(d ∪ a))))))) |