Proof of Theorem testmod
Step | Hyp | Ref
| Expression |
1 | | leao1 162 |
. . . . . . . 8
((a ∪ c) ∩ (b
∪ d)) ≤ ((a ∪ c) ∪
((b ∪ c) ∩ (d
∪ a))) |
2 | 1 | mli 1126 |
. . . . . . 7
((((a ∪ c) ∪ ((b
∪ c) ∩ (d ∪ a)))
∩ d) ∪ ((a ∪ c) ∩
(b ∪ d))) = (((a
∪ c) ∪ ((b ∪ c) ∩
(d ∪ a))) ∩ (d
∪ ((a ∪ c) ∩ (b
∪ d)))) |
3 | | orass 75 |
. . . . . . . 8
((a ∪ c) ∪ ((b
∪ c) ∩ (d ∪ a))) =
(a ∪ (c ∪ ((b
∪ c) ∩ (d ∪ a)))) |
4 | 3 | ran 78 |
. . . . . . 7
(((a ∪ c) ∪ ((b
∪ c) ∩ (d ∪ a)))
∩ (d ∪ ((a ∪ c) ∩
(b ∪ d)))) = ((a
∪ (c ∪ ((b ∪ c) ∩
(d ∪ a)))) ∩ (d
∪ ((a ∪ c) ∩ (b
∪ d)))) |
5 | 2, 4 | tr 62 |
. . . . . 6
((((a ∪ c) ∪ ((b
∪ c) ∩ (d ∪ a)))
∩ d) ∪ ((a ∪ c) ∩
(b ∪ d))) = ((a ∪
(c ∪ ((b ∪ c) ∩
(d ∪ a)))) ∩ (d
∪ ((a ∪ c) ∩ (b
∪ d)))) |
6 | 5 | lan 77 |
. . . . 5
(b ∩ ((((a ∪ c) ∪
((b ∪ c) ∩ (d
∪ a))) ∩ d) ∪ ((a
∪ c) ∩ (b ∪ d)))) =
(b ∩ ((a ∪ (c ∪
((b ∪ c) ∩ (d
∪ a)))) ∩ (d ∪ ((a
∪ c) ∩ (b ∪ d))))) |
7 | 6 | ror 71 |
. . . 4
((b ∩ ((((a ∪ c) ∪
((b ∪ c) ∩ (d
∪ a))) ∩ d) ∪ ((a
∪ c) ∩ (b ∪ d))))
∪ a) = ((b ∩ ((a
∪ (c ∪ ((b ∪ c) ∩
(d ∪ a)))) ∩ (d
∪ ((a ∪ c) ∩ (b
∪ d))))) ∪ a) |
8 | | an12 81 |
. . . . 5
(b ∩ ((a ∪ (c ∪
((b ∪ c) ∩ (d
∪ a)))) ∩ (d ∪ ((a
∪ c) ∩ (b ∪ d))))) =
((a ∪ (c ∪ ((b
∪ c) ∩ (d ∪ a))))
∩ (b ∩ (d ∪ ((a
∪ c) ∩ (b ∪ d))))) |
9 | 8 | ror 71 |
. . . 4
((b ∩ ((a ∪ (c ∪
((b ∪ c) ∩ (d
∪ a)))) ∩ (d ∪ ((a
∪ c) ∩ (b ∪ d)))))
∪ a) = (((a ∪ (c ∪
((b ∪ c) ∩ (d
∪ a)))) ∩ (b ∩ (d ∪
((a ∪ c) ∩ (b
∪ d))))) ∪ a) |
10 | 7, 9 | tr 62 |
. . 3
((b ∩ ((((a ∪ c) ∪
((b ∪ c) ∩ (d
∪ a))) ∩ d) ∪ ((a
∪ c) ∩ (b ∪ d))))
∪ a) = (((a ∪ (c ∪
((b ∪ c) ∩ (d
∪ a)))) ∩ (b ∩ (d ∪
((a ∪ c) ∩ (b
∪ d))))) ∪ a) |
11 | | leo 158 |
. . . 4
a ≤ (a ∪ (c ∪
((b ∪ c) ∩ (d
∪ a)))) |
12 | 11 | mli 1126 |
. . 3
(((a ∪ (c ∪ ((b
∪ c) ∩ (d ∪ a))))
∩ (b ∩ (d ∪ ((a
∪ c) ∩ (b ∪ d)))))
∪ a) = ((a ∪ (c ∪
((b ∪ c) ∩ (d
∪ a)))) ∩ ((b ∩ (d ∪
((a ∪ c) ∩ (b
∪ d)))) ∪ a)) |
13 | | orcom 73 |
. . . . 5
(a ∪ (c ∪ ((b
∪ c) ∩ (d ∪ a)))) =
((c ∪ ((b ∪ c) ∩
(d ∪ a))) ∪ a) |
14 | | or32 82 |
. . . . 5
((c ∪ ((b ∪ c) ∩
(d ∪ a))) ∪ a) =
((c ∪ a) ∪ ((b
∪ c) ∩ (d ∪ a))) |
15 | 13, 14 | tr 62 |
. . . 4
(a ∪ (c ∪ ((b
∪ c) ∩ (d ∪ a)))) =
((c ∪ a) ∪ ((b
∪ c) ∩ (d ∪ a))) |
16 | | orcom 73 |
. . . 4
((b ∩ (d ∪ ((a
∪ c) ∩ (b ∪ d))))
∪ a) = (a ∪ (b ∩
(d ∪ ((a ∪ c) ∩
(b ∪ d))))) |
17 | 15, 16 | 2an 79 |
. . 3
((a ∪ (c ∪ ((b
∪ c) ∩ (d ∪ a))))
∩ ((b ∩ (d ∪ ((a
∪ c) ∩ (b ∪ d))))
∪ a)) = (((c ∪ a) ∪
((b ∪ c) ∩ (d
∪ a))) ∩ (a ∪ (b ∩
(d ∪ ((a ∪ c) ∩
(b ∪ d)))))) |
18 | 10, 12, 17 | 3tr 65 |
. 2
((b ∩ ((((a ∪ c) ∪
((b ∪ c) ∩ (d
∪ a))) ∩ d) ∪ ((a
∪ c) ∩ (b ∪ d))))
∪ a) = (((c ∪ a) ∪
((b ∪ c) ∩ (d
∪ a))) ∩ (a ∪ (b ∩
(d ∪ ((a ∪ c) ∩
(b ∪ d)))))) |
19 | 18 | cm 61 |
1
(((c ∪ a) ∪ ((b
∪ c) ∩ (d ∪ a)))
∩ (a ∪ (b ∩ (d ∪
((a ∪ c) ∩ (b
∪ d)))))) = ((b ∩ ((((a
∪ c) ∪ ((b ∪ c) ∩
(d ∪ a))) ∩ d)
∪ ((a ∪ c) ∩ (b
∪ d)))) ∪ a) |