Proof of Theorem testmod2
Step | Hyp | Ref
| Expression |
1 | | orass 75 |
. . . . 5
((a ∪ c) ∪ d) =
(a ∪ (c ∪ d)) |
2 | 1 | lan 77 |
. . . 4
((a ∪ b) ∩ ((a
∪ c) ∪ d)) = ((a ∪
b) ∩ (a ∪ (c ∪
d))) |
3 | 2 | cm 61 |
. . 3
((a ∪ b) ∩ (a
∪ (c ∪ d))) = ((a ∪
b) ∩ ((a ∪ c) ∪
d)) |
4 | | leo 158 |
. . . . 5
a ≤ (a ∪ c) |
5 | 4 | ler 149 |
. . . 4
a ≤ ((a ∪ c) ∪
d) |
6 | 5 | mlduali 1128 |
. . 3
((a ∪ b) ∩ ((a
∪ c) ∪ d)) = (a ∪
(b ∩ ((a ∪ c) ∪
d))) |
7 | 3, 6 | tr 62 |
. 2
((a ∪ b) ∩ (a
∪ (c ∪ d))) = (a ∪
(b ∩ ((a ∪ c) ∪
d))) |
8 | | leo 158 |
. . . . . . . . 9
b ≤ (b ∪ d) |
9 | | leor 159 |
. . . . . . . . 9
b ≤ ((a ∪ c) ∪
b) |
10 | 8, 9 | ler2an 173 |
. . . . . . . 8
b ≤ ((b ∪ d) ∩
((a ∪ c) ∪ b)) |
11 | 10 | df2le2 136 |
. . . . . . 7
(b ∩ ((b ∪ d) ∩
((a ∪ c) ∪ b))) =
b |
12 | 11 | ran 78 |
. . . . . 6
((b ∩ ((b ∪ d) ∩
((a ∪ c) ∪ b)))
∩ ((a ∪ c) ∪ d)) =
(b ∩ ((a ∪ c) ∪
d)) |
13 | 12 | cm 61 |
. . . . 5
(b ∩ ((a ∪ c) ∪
d)) = ((b ∩ ((b
∪ d) ∩ ((a ∪ c) ∪
b))) ∩ ((a ∪ c) ∪
d)) |
14 | | anass 76 |
. . . . 5
((b ∩ ((b ∪ d) ∩
((a ∪ c) ∪ b)))
∩ ((a ∪ c) ∪ d)) =
(b ∩ (((b ∪ d) ∩
((a ∪ c) ∪ b))
∩ ((a ∪ c) ∪ d))) |
15 | 13, 14 | tr 62 |
. . . 4
(b ∩ ((a ∪ c) ∪
d)) = (b ∩ (((b
∪ d) ∩ ((a ∪ c) ∪
b)) ∩ ((a ∪ c) ∪
d))) |
16 | | an32 83 |
. . . . . . . . . 10
(((b ∪ d) ∩ ((a
∪ c) ∪ b)) ∩ ((a
∪ c) ∪ d)) = (((b ∪
d) ∩ ((a ∪ c) ∪
d)) ∩ ((a ∪ c) ∪
b)) |
17 | | leor 159 |
. . . . . . . . . . . . 13
d ≤ (b ∪ d) |
18 | 17 | mldual2i 1127 |
. . . . . . . . . . . 12
((b ∪ d) ∩ ((a
∪ c) ∪ d)) = (((b ∪
d) ∩ (a ∪ c))
∪ d) |
19 | | ancom 74 |
. . . . . . . . . . . . 13
((b ∪ d) ∩ (a
∪ c)) = ((a ∪ c) ∩
(b ∪ d)) |
20 | 19 | ror 71 |
. . . . . . . . . . . 12
(((b ∪ d) ∩ (a
∪ c)) ∪ d) = (((a ∪
c) ∩ (b ∪ d))
∪ d) |
21 | 18, 20 | tr 62 |
. . . . . . . . . . 11
((b ∪ d) ∩ ((a
∪ c) ∪ d)) = (((a ∪
c) ∩ (b ∪ d))
∪ d) |
22 | 21 | ran 78 |
. . . . . . . . . 10
(((b ∪ d) ∩ ((a
∪ c) ∪ d)) ∩ ((a
∪ c) ∪ b)) = ((((a
∪ c) ∩ (b ∪ d))
∪ d) ∩ ((a ∪ c) ∪
b)) |
23 | 16, 22 | tr 62 |
. . . . . . . . 9
(((b ∪ d) ∩ ((a
∪ c) ∪ b)) ∩ ((a
∪ c) ∪ d)) = ((((a
∪ c) ∩ (b ∪ d))
∪ d) ∩ ((a ∪ c) ∪
b)) |
24 | | lea 160 |
. . . . . . . . . . . . 13
((a ∪ c) ∩ (b
∪ d)) ≤ (a ∪ c) |
25 | 24 | leror 152 |
. . . . . . . . . . . 12
(((a ∪ c) ∩ (b
∪ d)) ∪ d) ≤ ((a
∪ c) ∪ d) |
26 | 25 | df2le2 136 |
. . . . . . . . . . 11
((((a ∪ c) ∩ (b
∪ d)) ∪ d) ∩ ((a
∪ c) ∪ d)) = (((a ∪
c) ∩ (b ∪ d))
∪ d) |
27 | 26 | ran 78 |
. . . . . . . . . 10
(((((a ∪ c) ∩ (b
∪ d)) ∪ d) ∩ ((a
∪ c) ∪ d)) ∩ ((a
∪ c) ∪ b)) = ((((a
∪ c) ∩ (b ∪ d))
∪ d) ∩ ((a ∪ c) ∪
b)) |
28 | 27 | cm 61 |
. . . . . . . . 9
((((a ∪ c) ∩ (b
∪ d)) ∪ d) ∩ ((a
∪ c) ∪ b)) = (((((a
∪ c) ∩ (b ∪ d))
∪ d) ∩ ((a ∪ c) ∪
d)) ∩ ((a ∪ c) ∪
b)) |
29 | 23, 28 | tr 62 |
. . . . . . . 8
(((b ∪ d) ∩ ((a
∪ c) ∪ b)) ∩ ((a
∪ c) ∪ d)) = (((((a
∪ c) ∩ (b ∪ d))
∪ d) ∩ ((a ∪ c) ∪
d)) ∩ ((a ∪ c) ∪
b)) |
30 | | anass 76 |
. . . . . . . 8
(((((a ∪ c) ∩ (b
∪ d)) ∪ d) ∩ ((a
∪ c) ∪ d)) ∩ ((a
∪ c) ∪ b)) = ((((a
∪ c) ∩ (b ∪ d))
∪ d) ∩ (((a ∪ c) ∪
d) ∩ ((a ∪ c) ∪
b))) |
31 | 29, 30 | tr 62 |
. . . . . . 7
(((b ∪ d) ∩ ((a
∪ c) ∪ b)) ∩ ((a
∪ c) ∪ d)) = ((((a
∪ c) ∩ (b ∪ d))
∪ d) ∩ (((a ∪ c) ∪
d) ∩ ((a ∪ c) ∪
b))) |
32 | | l42modlem1 1149 |
. . . . . . . . 9
(((a ∪ c) ∪ d)
∩ ((a ∪ c) ∪ b)) =
((a ∪ c) ∪ ((a
∪ d) ∩ (c ∪ b))) |
33 | | orcom 73 |
. . . . . . . . . . . 12
(a ∪ d) = (d ∪
a) |
34 | | orcom 73 |
. . . . . . . . . . . 12
(c ∪ b) = (b ∪
c) |
35 | 33, 34 | 2an 79 |
. . . . . . . . . . 11
((a ∪ d) ∩ (c
∪ b)) = ((d ∪ a) ∩
(b ∪ c)) |
36 | | ancom 74 |
. . . . . . . . . . 11
((d ∪ a) ∩ (b
∪ c)) = ((b ∪ c) ∩
(d ∪ a)) |
37 | 35, 36 | tr 62 |
. . . . . . . . . 10
((a ∪ d) ∩ (c
∪ b)) = ((b ∪ c) ∩
(d ∪ a)) |
38 | 37 | lor 70 |
. . . . . . . . 9
((a ∪ c) ∪ ((a
∪ d) ∩ (c ∪ b))) =
((a ∪ c) ∪ ((b
∪ c) ∩ (d ∪ a))) |
39 | 32, 38 | tr 62 |
. . . . . . . 8
(((a ∪ c) ∪ d)
∩ ((a ∪ c) ∪ b)) =
((a ∪ c) ∪ ((b
∪ c) ∩ (d ∪ a))) |
40 | 39 | lan 77 |
. . . . . . 7
((((a ∪ c) ∩ (b
∪ d)) ∪ d) ∩ (((a
∪ c) ∪ d) ∩ ((a
∪ c) ∪ b))) = ((((a
∪ c) ∩ (b ∪ d))
∪ d) ∩ ((a ∪ c) ∪
((b ∪ c) ∩ (d
∪ a)))) |
41 | 31, 40 | tr 62 |
. . . . . 6
(((b ∪ d) ∩ ((a
∪ c) ∪ b)) ∩ ((a
∪ c) ∪ d)) = ((((a
∪ c) ∩ (b ∪ d))
∪ d) ∩ ((a ∪ c) ∪
((b ∪ c) ∩ (d
∪ a)))) |
42 | | leao1 162 |
. . . . . . 7
((a ∪ c) ∩ (b
∪ d)) ≤ ((a ∪ c) ∪
((b ∪ c) ∩ (d
∪ a))) |
43 | 42 | mlduali 1128 |
. . . . . 6
((((a ∪ c) ∩ (b
∪ d)) ∪ d) ∩ ((a
∪ c) ∪ ((b ∪ c) ∩
(d ∪ a)))) = (((a
∪ c) ∩ (b ∪ d))
∪ (d ∩ ((a ∪ c) ∪
((b ∪ c) ∩ (d
∪ a))))) |
44 | 41, 43 | tr 62 |
. . . . 5
(((b ∪ d) ∩ ((a
∪ c) ∪ b)) ∩ ((a
∪ c) ∪ d)) = (((a ∪
c) ∩ (b ∪ d))
∪ (d ∩ ((a ∪ c) ∪
((b ∪ c) ∩ (d
∪ a))))) |
45 | 44 | lan 77 |
. . . 4
(b ∩ (((b ∪ d) ∩
((a ∪ c) ∪ b))
∩ ((a ∪ c) ∪ d))) =
(b ∩ (((a ∪ c) ∩
(b ∪ d)) ∪ (d
∩ ((a ∪ c) ∪ ((b
∪ c) ∩ (d ∪ a)))))) |
46 | 15, 45 | tr 62 |
. . 3
(b ∩ ((a ∪ c) ∪
d)) = (b ∩ (((a
∪ c) ∩ (b ∪ d))
∪ (d ∩ ((a ∪ c) ∪
((b ∪ c) ∩ (d
∪ a)))))) |
47 | 46 | lor 70 |
. 2
(a ∪ (b ∩ ((a
∪ c) ∪ d))) = (a ∪
(b ∩ (((a ∪ c) ∩
(b ∪ d)) ∪ (d
∩ ((a ∪ c) ∪ ((b
∪ c) ∩ (d ∪ a))))))) |
48 | 7, 47 | tr 62 |
1
((a ∪ b) ∩ (a
∪ (c ∪ d))) = (a ∪
(b ∩ (((a ∪ c) ∩
(b ∪ d)) ∪ (d
∩ ((a ∪ c) ∪ ((b
∪ c) ∩ (d ∪ a))))))) |