![]() |
Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > QLE Home > Th. List > u1lem3var1 | GIF version |
Description: A 3-variable formula. (Contributed by Josiah Burroughs, 26-May-2004.) |
Ref | Expression |
---|---|
u1lem3var1 | (((a →1 c) ∩ (b →1 c))⊥ ∪ (((a →1 c)⊥ →1 c) ∩ ((b →1 c)⊥ →1 c))) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-a2 31 | . 2 (((a →1 c) ∩ (b →1 c))⊥ ∪ ((a →1 c) ∩ (b →1 c))) = (((a →1 c) ∩ (b →1 c)) ∪ ((a →1 c) ∩ (b →1 c))⊥ ) | |
2 | u1lemn1b 730 | . . . . 5 (a →1 c) = ((a →1 c)⊥ →1 c) | |
3 | u1lemn1b 730 | . . . . 5 (b →1 c) = ((b →1 c)⊥ →1 c) | |
4 | 2, 3 | 2an 79 | . . . 4 ((a →1 c) ∩ (b →1 c)) = (((a →1 c)⊥ →1 c) ∩ ((b →1 c)⊥ →1 c)) |
5 | 4 | ax-r1 35 | . . 3 (((a →1 c)⊥ →1 c) ∩ ((b →1 c)⊥ →1 c)) = ((a →1 c) ∩ (b →1 c)) |
6 | 5 | lor 70 | . 2 (((a →1 c) ∩ (b →1 c))⊥ ∪ (((a →1 c)⊥ →1 c) ∩ ((b →1 c)⊥ →1 c))) = (((a →1 c) ∩ (b →1 c))⊥ ∪ ((a →1 c) ∩ (b →1 c))) |
7 | df-t 41 | . 2 1 = (((a →1 c) ∩ (b →1 c)) ∪ ((a →1 c) ∩ (b →1 c))⊥ ) | |
8 | 1, 6, 7 | 3tr1 63 | 1 (((a →1 c) ∩ (b →1 c))⊥ ∪ (((a →1 c)⊥ →1 c) ∩ ((b →1 c)⊥ →1 c))) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 1wt 8 →1 wi1 12 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i1 44 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |