QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  u1lem3var1 GIF version

Theorem u1lem3var1 731
Description: A 3-variable formula. (Contributed by Josiah Burroughs, 26-May-2004.)
Assertion
Ref Expression
u1lem3var1 (((a1 c) ∩ (b1 c)) ∪ (((a1 c)1 c) ∩ ((b1 c)1 c))) = 1

Proof of Theorem u1lem3var1
StepHypRef Expression
1 ax-a2 31 . 2 (((a1 c) ∩ (b1 c)) ∪ ((a1 c) ∩ (b1 c))) = (((a1 c) ∩ (b1 c)) ∪ ((a1 c) ∩ (b1 c)) )
2 u1lemn1b 730 . . . . 5 (a1 c) = ((a1 c)1 c)
3 u1lemn1b 730 . . . . 5 (b1 c) = ((b1 c)1 c)
42, 32an 79 . . . 4 ((a1 c) ∩ (b1 c)) = (((a1 c)1 c) ∩ ((b1 c)1 c))
54ax-r1 35 . . 3 (((a1 c)1 c) ∩ ((b1 c)1 c)) = ((a1 c) ∩ (b1 c))
65lor 70 . 2 (((a1 c) ∩ (b1 c)) ∪ (((a1 c)1 c) ∩ ((b1 c)1 c))) = (((a1 c) ∩ (b1 c)) ∪ ((a1 c) ∩ (b1 c)))
7 df-t 41 . 2 1 = (((a1 c) ∩ (b1 c)) ∪ ((a1 c) ∩ (b1 c)) )
81, 6, 73tr1 63 1 (((a1 c) ∩ (b1 c)) ∪ (((a1 c)1 c) ∩ ((b1 c)1 c))) = 1
Colors of variables: term
Syntax hints:   = wb 1   wn 4  wo 6  wa 7  1wt 8  1 wi1 12
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-i1 44
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator