Theorem List for Quantum Logic Explorer - 701-800 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | u1lemc4 701 |
Lemma for Sasaki implication study. (Contributed by NM,
24-Dec-1997.)
|
a C b ⇒ (a →1 b) = (a⊥ ∪ b) |
|
Theorem | u2lemc4 702 |
Lemma for Dishkant implication study. (Contributed by NM,
24-Dec-1997.)
|
a C b ⇒ (a →2 b) = (a⊥ ∪ b) |
|
Theorem | u3lemc4 703 |
Lemma for Kalmbach implication study. (Contributed by NM,
24-Dec-1997.)
|
a C b ⇒ (a →3 b) = (a⊥ ∪ b) |
|
Theorem | u4lemc4 704 |
Lemma for non-tollens implication study. (Contributed by NM,
24-Dec-1997.)
|
a C b ⇒ (a →4 b) = (a⊥ ∪ b) |
|
Theorem | u5lemc4 705 |
Lemma for relevance implication study. (Contributed by NM,
24-Dec-1997.)
|
a C b ⇒ (a →5 b) = (a⊥ ∪ b) |
|
Theorem | u1lemc6 706 |
Commutation theorem for Sasaki implication. (Contributed by NM,
19-Mar-1999.)
|
(a →1 b) C (a⊥ →1 b) |
|
Theorem | comi12 707 |
Commutation theorem for →1 and →2 . (Contributed by NM,
5-Jul-2000.)
|
(a →1 b) C (c
→2 a) |
|
Theorem | i1com 708 |
Commutation expressed with →1 . (Contributed by
NM,
1-Dec-1999.)
|
b ≤ (a
→1 b) ⇒ a C b |
|
Theorem | comi1 709 |
Commutation expressed with →1 . (Contributed by
NM,
1-Dec-1999.)
|
a C b ⇒ b ≤ (a
→1 b) |
|
Theorem | u1lemle1 710 |
L.e. to Sasaki implication. (Contributed by NM, 11-Jan-1998.)
|
a ≤ b ⇒ (a →1 b) = 1 |
|
Theorem | u2lemle1 711 |
L.e. to Dishkant implication. (Contributed by NM, 11-Jan-1998.)
|
a ≤ b ⇒ (a →2 b) = 1 |
|
Theorem | u3lemle1 712 |
L.e. to Kalmbach implication. (Contributed by NM, 11-Jan-1998.)
|
a ≤ b ⇒ (a →3 b) = 1 |
|
Theorem | u4lemle1 713 |
L.e. to non-tollens implication. (Contributed by NM, 11-Jan-1998.)
|
a ≤ b ⇒ (a →4 b) = 1 |
|
Theorem | u5lemle1 714 |
L.e. to relevance implication. (Contributed by NM, 11-Jan-1998.)
|
a ≤ b ⇒ (a →5 b) = 1 |
|
Theorem | u1lemle2 715 |
Sasaki implication to l.e. (Contributed by NM, 11-Jan-1998.)
|
(a →1 b) = 1 ⇒ a ≤ b |
|
Theorem | u2lemle2 716 |
Dishkant implication to l.e. (Contributed by NM, 11-Jan-1998.)
|
(a →2 b) = 1 ⇒ a ≤ b |
|
Theorem | u3lemle2 717 |
Kalmbach implication to l.e. (Contributed by NM, 11-Jan-1998.)
|
(a →3 b) = 1 ⇒ a ≤ b |
|
Theorem | u4lemle2 718 |
Non-tollens implication to l.e. (Contributed by NM, 11-Jan-1998.)
|
(a →4 b) = 1 ⇒ a ≤ b |
|
Theorem | u5lemle2 719 |
Relevance implication to l.e. (Contributed by NM, 11-Jan-1998.)
|
(a →5 b) = 1 ⇒ a ≤ b |
|
Theorem | u1lembi 720 |
Sasaki implication and biconditional. (Contributed by NM,
17-Jan-1998.)
|
((a →1 b) ∩ (b
→1 a)) = (a ≡ b) |
|
Theorem | u2lembi 721 |
Dishkant implication and biconditional. (Contributed by NM,
17-Jan-1998.)
|
((a →2 b) ∩ (b
→2 a)) = (a ≡ b) |
|
Theorem | i2bi 722 |
Dishkant implication expressed with biconditional. (Contributed by NM,
20-Nov-1998.)
|
(a →2 b) = (b ∪
(a ≡ b)) |
|
Theorem | u3lembi 723 |
Kalmbach implication and biconditional. (Contributed by NM,
17-Jan-1998.)
|
((a →3 b) ∩ (b
→3 a)) = (a ≡ b) |
|
Theorem | u4lembi 724 |
Non-tollens implication and biconditional. (Contributed by NM,
17-Jan-1998.)
|
((a →4 b) ∩ (b
→4 a)) = (a ≡ b) |
|
Theorem | u5lembi 725 |
Relevance implication and biconditional. (Contributed by NM,
17-Jan-1998.)
|
((a →5 b) ∩ (b
→5 a)) = (a ≡ b) |
|
Theorem | u12lembi 726 |
Sasaki/Dishkant implication and biconditional. Equation 4.14 of
[MegPav2000] p. 23. The variable i in
the paper is set to 1, and j is set
to 2. (Contributed by NM, 2-Mar-2000.)
|
((a →1 b) ∩ (b
→2 a)) = (a ≡ b) |
|
Theorem | u21lembi 727 |
Dishkant/Sasaki implication and biconditional. (Contributed by NM,
3-Mar-2000.)
|
((a →2 b) ∩ (b
→1 a)) = (a ≡ b) |
|
Theorem | ublemc1 728 |
Commutation theorem for biimplication. (Contributed by NM,
19-Sep-1998.)
|
a C (a
≡ b) |
|
Theorem | ublemc2 729 |
Commutation theorem for biimplication. (Contributed by NM,
19-Sep-1998.)
|
b C (a
≡ b) |
|
0.3.7 Some proofs contributed by Josiah
Burroughs
|
|
Theorem | u1lemn1b 730 |
This theorem continues the line of proofs such as u1lemnaa 640,
ud1lem0b 256, u1lemnanb 655, etc. (Contributed by Josiah Burroughs,
26-May-2004.)
|
(a →1 b) = ((a
→1 b)⊥
→1 b) |
|
Theorem | u1lem3var1 731 |
A 3-variable formula. (Contributed by Josiah Burroughs, 26-May-2004.)
|
(((a →1 c) ∩ (b
→1 c))⊥
∪ (((a →1 c)⊥ →1 c) ∩ ((b
→1 c)⊥
→1 c))) =
1 |
|
Theorem | oi3oa3lem1 732 |
An attempt at the OA3 conjecture, which is true if (a ≡ b) =
1.
(Contributed by Josiah Burroughs, 27-May-2004.)
|
1 = (b ≡ a) ⇒ (((a →1 c) ∩ (b
→1 c)) ∪ (a ∩ b)) =
1 |
|
Theorem | oi3oa3 733 |
An attempt at the OA3 conjecture, which is true if (a ≡ b) =
1.
(Contributed by Josiah Burroughs, 27-May-2004.)
|
1 = (b ≡ a) ⇒ (((a →1 c) ∩ (b
→1 c)) ∪ ((((a →1 c) ∩ (((a
→1 c) ∩ (b →1 c)) ∪ (a
∩ b))) →1 c) ∩ (((b
→1 c) ∩ (((a →1 c) ∩ (b
→1 c)) ∪ (a ∩ b)))
→1 c))) =
1 |
|
0.3.8 More lemmas for unified
implication
|
|
Theorem | u1lem1 734 |
Lemma for unified implication study. (Contributed by NM, 14-Dec-1997.)
|
((a →1 b) →1 a) = a |
|
Theorem | u2lem1 735 |
Lemma for unified implication study. (Contributed by NM, 14-Dec-1997.)
|
((a →2 b) →2 a) = a |
|
Theorem | u3lem1 736 |
Lemma for unified implication study. (Contributed by NM, 14-Dec-1997.)
|
((a →3 b) →3 a) = ((a ∪
b) ∩ (a ∪ b⊥ )) |
|
Theorem | u4lem1 737 |
Lemma for unified implication study. (Contributed by NM, 16-Dec-1997.)
|
((a →4 b) →4 a) = ((((a
∩ b) ∪ (a ∩ b⊥ )) ∪ a⊥ ) ∩ ((a ∪ b)
∩ (a ∪ b⊥ ))) |
|
Theorem | u5lem1 738 |
Lemma for unified implication study. (Contributed by NM, 16-Dec-1997.)
|
((a →5 b) →5 a) = ((a ∪
b) ∩ (a ∪ b⊥ )) |
|
Theorem | u1lem1n 739 |
Lemma for unified implication study. (Contributed by NM, 16-Dec-1997.)
|
((a →1 b) →1 a)⊥ = a⊥ |
|
Theorem | u2lem1n 740 |
Lemma for unified implication study. (Contributed by NM, 16-Dec-1997.)
|
((a →2 b) →2 a)⊥ = a⊥ |
|
Theorem | u3lem1n 741 |
Lemma for unified implication study. (Contributed by NM, 16-Dec-1997.)
|
((a →3 b) →3 a)⊥ = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
|
Theorem | u4lem1n 742 |
Lemma for unified implication study. (Contributed by NM, 16-Dec-1997.)
|
((a →4 b) →4 a)⊥ = ((((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ )) ∩ a) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
|
Theorem | u5lem1n 743 |
Lemma for unified implication study. (Contributed by NM, 16-Dec-1997.)
|
((a →5 b) →5 a)⊥ = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
|
Theorem | u1lem2 744 |
Lemma for unified implication study. (Contributed by NM, 16-Dec-1997.)
|
(((a →1 b) →1 a) →1 a) = 1 |
|
Theorem | u2lem2 745 |
Lemma for unified implication study. (Contributed by NM, 16-Dec-1997.)
|
(((a →2 b) →2 a) →2 a) = 1 |
|
Theorem | u3lem2 746 |
Lemma for unified implication study. (Contributed by NM, 24-Dec-1997.)
|
(((a →3 b) →3 a) →3 a) = (a ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
|
Theorem | u4lem2 747 |
Lemma for unified implication study. (Contributed by NM, 24-Dec-1997.)
|
(((a →4 b) →4 a) →4 a) = (a ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
|
Theorem | u5lem2 748 |
Lemma for unified implication study. (Contributed by NM, 24-Dec-1997.)
|
(((a →5 b) →5 a) →5 a) = (a ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
|
Theorem | u1lem3 749 |
Lemma for unified implication study. (Contributed by NM, 17-Dec-1997.)
|
(a →1 (b →1 a)) = (a⊥ ∪ ((a ∩ b)
∪ (a ∩ b⊥ ))) |
|
Theorem | u2lem3 750 |
Lemma for unified implication study. (Contributed by NM, 17-Dec-1997.)
|
(a →2 (b →2 a)) = 1 |
|
Theorem | u3lem3 751 |
Lemma for unified implication study. (Contributed by NM, 17-Dec-1997.)
|
(a →3 (b →3 a)) = (a ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
|
Theorem | u4lem3 752 |
Lemma for unified implication study. (Contributed by NM, 17-Dec-1997.)
|
(a →4 (b →4 a)) = (a⊥ ∪ ((a ∩ b)
∪ (a ∩ b⊥ ))) |
|
Theorem | u5lem3 753 |
Lemma for unified implication study. (Contributed by NM, 17-Dec-1997.)
|
(a →5 (b →5 a)) = (a⊥ ∪ ((a ∩ b)
∪ (a ∩ b⊥ ))) |
|
Theorem | u3lem3n 754 |
Lemma for unified implication study. (Contributed by NM, 17-Dec-1997.)
|
(a →3 (b →3 a))⊥ = (a⊥ ∩ ((a ∪ b)
∩ (a ∪ b⊥ ))) |
|
Theorem | u4lem3n 755 |
Lemma for unified implication study. (Contributed by NM, 17-Dec-1997.)
|
(a →4 (b →4 a))⊥ = (a ∩ ((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ ))) |
|
Theorem | u5lem3n 756 |
Lemma for unified implication study. (Contributed by NM, 17-Dec-1997.)
|
(a →5 (b →5 a))⊥ = (a ∩ ((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ ))) |
|
Theorem | u1lem4 757 |
Lemma for unified implication study. (Contributed by NM, 11-Jan-1998.)
|
(a →1 (a →1 (b →1 a))) = (a
→1 (b →1
a)) |
|
Theorem | u3lem4 758 |
Lemma for unified implication study. (Contributed by NM, 21-Jan-1998.)
|
(a →3 (a →3 (b →3 a))) = 1 |
|
Theorem | u4lem4 759 |
Lemma for unified implication study. (Contributed by NM, 18-Dec-1997.)
|
(a →4 (a →4 (b →4 a))) = (a
→4 (b →4
a)) |
|
Theorem | u5lem4 760 |
Lemma for unified implication study. (Contributed by NM, 24-Dec-1997.)
|
(a →5 (a →5 (b →5 a))) = (a
→5 (b →5
a)) |
|
Theorem | u1lem5 761 |
Lemma for unified implication study. (Contributed by NM, 20-Dec-1997.)
|
(a →1 (a →1 b)) = (a
→1 b) |
|
Theorem | u2lem5 762 |
Lemma for unified implication study. (Contributed by NM, 20-Dec-1997.)
|
(a →2 (a →2 b)) = (a
→2 b) |
|
Theorem | u3lem5 763 |
Lemma for unified implication study. (Contributed by NM, 24-Dec-1997.)
|
(a →3 (a →3 b)) = (a⊥ ∪ b) |
|
Theorem | u4lem5 764 |
Lemma for unified implication study. (Contributed by NM, 26-Dec-1997.)
|
(a →4 (a →4 b)) = ((a⊥ ∩ b⊥ ) ∪ b) |
|
Theorem | u5lem5 765 |
Lemma for unified implication study. (Contributed by NM, 20-Dec-1997.)
|
(a →5 (a →5 b)) = (a⊥ ∪ (a ∩ b)) |
|
Theorem | u4lem5n 766 |
Lemma for unified implication study. (Contributed by NM, 20-Dec-1997.)
|
(a →4 (a →4 b))⊥ = ((a ∪ b)
∩ b⊥
) |
|
Theorem | u3lem6 767 |
Lemma for unified implication study. (Contributed by NM, 24-Dec-1997.)
|
(a →3 (a →3 (a →3 b))) = (a
→3 (a →3
b)) |
|
Theorem | u4lem6 768 |
Lemma for unified implication study. (Contributed by NM, 26-Dec-1997.)
|
(a →4 (a →4 (a →4 b))) = (a
→4 b) |
|
Theorem | u5lem6 769 |
Lemma for unified implication study. (Contributed by NM, 20-Dec-1997.)
|
(a →5 (a →5 (a →5 b))) = (a
→5 (a →5
b)) |
|
Theorem | u24lem 770 |
Lemma for unified implication study. (Contributed by NM, 20-Dec-1997.)
|
((a →2 b) ∩ (a
→4 b)) = (a →5 b) |
|
Theorem | u12lem 771 |
Implication lemma. (Contributed by NM, 17-Nov-1998.)
|
((a →1 b) ∪ (a
→2 b)) = (a →0 b) |
|
Theorem | u1lem7 772 |
Lemma for unified implication study. (Contributed by NM, 24-Dec-1997.)
|
(a →1 (a⊥ →1 b)) = 1 |
|
Theorem | u2lem7 773 |
Lemma for unified implication study. (Contributed by NM, 24-Dec-1997.)
|
(a →2 (a⊥ →2 b)) = (((a
∩ b⊥ ) ∪
(a⊥ ∩ b⊥ )) ∪ b) |
|
Theorem | u3lem7 774 |
Lemma for unified implication study. (Contributed by NM, 24-Dec-1997.)
|
(a →3 (a⊥ →3 b)) = (a⊥ ∪ ((a ∩ b)
∪ (a ∩ b⊥ ))) |
|
Theorem | u2lem7n 775 |
Lemma for unified implication study. (Contributed by NM, 24-Dec-1997.)
|
(a →2 (a⊥ →2 b))⊥ = (((a ∪ b)
∩ (a⊥ ∪ b)) ∩ b⊥ ) |
|
Theorem | u1lem8 776 |
Lemma used in study of orthoarguesian law. (Contributed by NM,
27-Dec-1998.)
|
((a →1 b) ∩ (a⊥ →1 b)) = ((a ∩
b) ∪ (a⊥ ∩ b)) |
|
Theorem | u1lem9a 777 |
Lemma used in study of orthoarguesian law. Equation 4.11 of [MegPav2000]
p. 23. This is the first part of the inequality. (Contributed by NM,
28-Dec-1998.)
|
(a⊥ →1 b)⊥ ≤ a⊥ |
|
Theorem | u1lem9b 778 |
Lemma used in study of orthoarguesian law. Equation 4.11 of [MegPav2000]
p. 23. This is the second part of the inequality. (Contributed by NM,
27-Dec-1998.)
|
a⊥ ≤ (a →1 b) |
|
Theorem | u1lem9ab 779 |
Lemma used in study of orthoarguesian law. (Contributed by NM,
27-Dec-1998.)
|
(a⊥ →1 b)⊥ ≤ (a →1 b) |
|
Theorem | u1lem11 780 |
Lemma used in study of orthoarguesian law. (Contributed by NM,
28-Dec-1998.)
|
((a⊥ →1 b) →1 b) = (a
→1 b) |
|
Theorem | u1lem12 781 |
Lemma used in study of orthoarguesian law. Equation 4.12 of [MegPav2000]
p. 23. (Contributed by NM, 28-Dec-1998.)
|
((a →1 b) →1 b) = (a⊥ →1 b) |
|
Theorem | u2lem8 782 |
Lemma for unified implication study. (Contributed by NM, 24-Dec-1997.)
|
(a⊥ →2 (a →2 (a⊥ →2 b))) = (a
→2 (a⊥
→2 b)) |
|
Theorem | u3lem8 783 |
Lemma for unified implication study. (Contributed by NM, 24-Dec-1997.)
|
(a⊥ →3 (a →3 (a⊥ →3 b))) = 1 |
|
Theorem | u3lem9 784 |
Lemma for unified implication study. (Contributed by NM, 24-Dec-1997.)
|
(a →3 (a →3 (a⊥ →3 b))) = (a
→3 (a⊥
→3 b)) |
|
Theorem | u3lem10 785 |
Lemma for unified implication study. (Contributed by NM, 17-Jan-1998.)
|
(a →3 (a⊥ ∩ (a ∪ b))) =
a⊥ |
|
Theorem | u3lem11 786 |
Lemma for unified implication study. (Contributed by NM, 18-Jan-1998.)
|
(a →3 (b⊥ ∩ (a ∪ b))) =
(a →3 b⊥ ) |
|
Theorem | u3lem11a 787 |
Lemma for unified implication study. (Contributed by NM, 18-Jan-1998.)
|
(a →3 ((b →3 a) →3 (a →3 b))⊥ ) = (a →3 b⊥ ) |
|
Theorem | u3lem12 788 |
Lemma for unified implication study. (Contributed by NM, 18-Jan-1998.)
|
(a →3 (a →3 b⊥ ))⊥ =
(a ∩ b) |
|
Theorem | u3lem13a 789 |
Lemma for unified implication study. (Contributed by NM, 18-Jan-1998.)
|
(a →3 (a →3 b⊥ )⊥ ) =
(a →1 b) |
|
Theorem | u3lem13b 790 |
Lemma for unified implication study. (Contributed by NM, 19-Jan-1998.)
|
((a →3 b⊥ ) →3 a⊥ ) = (a →1 b) |
|
Theorem | u3lem14a 791 |
Lemma for unified implication study. (Contributed by NM, 19-Jan-1998.)
|
(a →3 ((b →3 a⊥ ) →3 b⊥ )) = (a →3 (b →3 a)) |
|
Theorem | u3lem14aa 792 |
Used to prove →1 "add antecedent" rule
in →3 system.
(Contributed by NM, 19-Jan-1998.)
|
(a →3 (a →3 ((b →3 a⊥ ) →3 b⊥ ))) = 1 |
|
Theorem | u3lem14aa2 793 |
Used to prove →1 "add antecedent" rule
in →3 system.
(Contributed by NM, 19-Jan-1998.)
|
(a →3 (a →3 (b →3 (b →3 a⊥ )⊥ ))) =
1 |
|
Theorem | u3lem14mp 794 |
Used to prove →1 modus ponens rule in →3 system. (Contributed
by NM, 19-Jan-1998.)
|
((a →3 b⊥ )⊥
→3 (a →3
(a →3 b))) = 1 |
|
Theorem | u3lem15 795 |
Lemma for Kalmbach implication. (Contributed by NM, 7-Aug-2001.)
|
((a →3 b) ∩ (a
∪ b)) = ((a⊥ ∪ b) ∩ (a
∪ (a⊥ ∩ b))) |
|
Theorem | u3lemax4 796 |
Possible axiom for Kalmbach implication system. (Contributed by NM,
21-Jan-1998.)
|
((a →3 b) →3 ((a →3 b) →3 ((b →3 a) →3 ((b →3 a) →3 ((c →3 (c →3 a)) →3 (c →3 (c →3 b))))))) = 1 |
|
Theorem | u3lemax5 797 |
Possible axiom for Kalmbach implication system. (Contributed by NM,
23-Jan-1998.)
|
((a →3 b) →3 ((a →3 b) →3 ((b →3 a) →3 ((b →3 a) →3 ((b →3 c) →3 ((b →3 c) →3 ((c →3 b) →3 ((c →3 b) →3 (a →3 c))))))))) = 1 |
|
Theorem | bi1o1a 798 |
Equivalence to biconditional. (Contributed by NM, 5-Jul-2000.)
|
(a ≡ b) =
((a →1 (a ∩ b))
∩ ((a ∪ b) →1 a)) |
|
Theorem | biao 799 |
Equivalence to biconditional. (Contributed by NM, 8-Jul-2000.)
|
(a ≡ b) =
((a ∩ b) ≡ (a
∪ b)) |
|
Theorem | i2i1i1 800 |
Equivalence to →2 . (Contributed by NM,
5-Jul-2000.)
|
(a →2 b) = ((a
→1 (a ∪ b)) ∩ ((a
∪ b) →1 b)) |