QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  u1lemnaa GIF version

Theorem u1lemnaa 640
Description: Lemma for Sasaki implication study. (Contributed by NM, 15-Dec-1997.)
Assertion
Ref Expression
u1lemnaa ((a1 b)a) = (a ∩ (ab ))

Proof of Theorem u1lemnaa
StepHypRef Expression
1 anor2 89 . 2 ((a1 b)a) = ((a1 b) ∪ a )
2 u1lemona 625 . . . 4 ((a1 b) ∪ a ) = (a ∪ (ab))
32ax-r4 37 . . 3 ((a1 b) ∪ a ) = (a ∪ (ab))
4 df-a 40 . . . . 5 (a ∩ (ab )) = (a ∪ (ab ) )
5 df-a 40 . . . . . . . 8 (ab) = (ab )
65lor 70 . . . . . . 7 (a ∪ (ab)) = (a ∪ (ab ) )
76ax-r4 37 . . . . . 6 (a ∪ (ab)) = (a ∪ (ab ) )
87ax-r1 35 . . . . 5 (a ∪ (ab ) ) = (a ∪ (ab))
94, 8ax-r2 36 . . . 4 (a ∩ (ab )) = (a ∪ (ab))
109ax-r1 35 . . 3 (a ∪ (ab)) = (a ∩ (ab ))
113, 10ax-r2 36 . 2 ((a1 b) ∪ a ) = (a ∩ (ab ))
121, 11ax-r2 36 1 ((a1 b)a) = (a ∩ (ab ))
Colors of variables: term
Syntax hints:   = wb 1   wn 4  wo 6  wa 7  1 wi1 12
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-i1 44
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator