Proof of Theorem u1lemnaa
Step | Hyp | Ref
| Expression |
1 | | anor2 89 |
. 2
((a →1 b)⊥ ∩ a) = ((a
→1 b) ∪ a⊥
)⊥ |
2 | | u1lemona 625 |
. . . 4
((a →1 b) ∪ a⊥ ) = (a⊥ ∪ (a ∩ b)) |
3 | 2 | ax-r4 37 |
. . 3
((a →1 b) ∪ a⊥ )⊥ = (a⊥ ∪ (a ∩ b))⊥ |
4 | | df-a 40 |
. . . . 5
(a ∩ (a⊥ ∪ b⊥ )) = (a⊥ ∪ (a⊥ ∪ b⊥ )⊥
)⊥ |
5 | | df-a 40 |
. . . . . . . 8
(a ∩ b) = (a⊥ ∪ b⊥
)⊥ |
6 | 5 | lor 70 |
. . . . . . 7
(a⊥ ∪ (a ∩ b)) =
(a⊥ ∪ (a⊥ ∪ b⊥ )⊥
) |
7 | 6 | ax-r4 37 |
. . . . . 6
(a⊥ ∪ (a ∩ b))⊥ = (a⊥ ∪ (a⊥ ∪ b⊥ )⊥
)⊥ |
8 | 7 | ax-r1 35 |
. . . . 5
(a⊥ ∪ (a⊥ ∪ b⊥ )⊥
)⊥ = (a⊥
∪ (a ∩ b))⊥ |
9 | 4, 8 | ax-r2 36 |
. . . 4
(a ∩ (a⊥ ∪ b⊥ )) = (a⊥ ∪ (a ∩ b))⊥ |
10 | 9 | ax-r1 35 |
. . 3
(a⊥ ∪ (a ∩ b))⊥ = (a ∩ (a⊥ ∪ b⊥ )) |
11 | 3, 10 | ax-r2 36 |
. 2
((a →1 b) ∪ a⊥ )⊥ = (a ∩ (a⊥ ∪ b⊥ )) |
12 | 1, 11 | ax-r2 36 |
1
((a →1 b)⊥ ∩ a) = (a ∩
(a⊥ ∪ b⊥ )) |