Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > u1lemnoa | GIF version |
Description: Lemma for Sasaki implication study. (Contributed by NM, 16-Dec-1997.) |
Ref | Expression |
---|---|
u1lemnoa | ((a →1 b)⊥ ∪ a) = a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anor1 88 | . . . 4 ((a →1 b) ∩ a⊥ ) = ((a →1 b)⊥ ∪ a)⊥ | |
2 | 1 | ax-r1 35 | . . 3 ((a →1 b)⊥ ∪ a)⊥ = ((a →1 b) ∩ a⊥ ) |
3 | u1lemana 605 | . . 3 ((a →1 b) ∩ a⊥ ) = a⊥ | |
4 | 2, 3 | ax-r2 36 | . 2 ((a →1 b)⊥ ∪ a)⊥ = a⊥ |
5 | 4 | con1 66 | 1 ((a →1 b)⊥ ∪ a) = a |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-i1 44 |
This theorem is referenced by: u1lem1 734 |
Copyright terms: Public domain | W3C validator |