Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > anor1 | GIF version |
Description: Conjunction expressed with disjunction. (Contributed by NM, 12-Aug-1997.) |
Ref | Expression |
---|---|
anor1 | (a ∩ b⊥ ) = (a⊥ ∪ b)⊥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-a 40 | . 2 (a ∩ b⊥ ) = (a⊥ ∪ b⊥ ⊥ )⊥ | |
2 | ax-a1 30 | . . . . 5 b = b⊥ ⊥ | |
3 | 2 | ax-r1 35 | . . . 4 b⊥ ⊥ = b |
4 | 3 | lor 70 | . . 3 (a⊥ ∪ b⊥ ⊥ ) = (a⊥ ∪ b) |
5 | 4 | ax-r4 37 | . 2 (a⊥ ∪ b⊥ ⊥ )⊥ = (a⊥ ∪ b)⊥ |
6 | 1, 5 | ax-r2 36 | 1 (a ∩ b⊥ ) = (a⊥ ∪ b)⊥ |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 |
This theorem is referenced by: oran2 92 ka4lemo 228 ni31 250 ud4lem0c 280 wcomlem 382 wcom3i 422 comcom 453 com3i 467 i3bi 496 ni32 502 i3th1 543 i3con 551 ud3lem1a 566 ud3lem1b 567 ud3lem1c 568 ud3lem1 570 ud3lem3 576 ud4lem1a 577 ud4lem1b 578 ud4lem1d 580 ud4lem1 581 ud5lem1 589 u4lemaa 603 u3lemanb 617 u4lemoa 623 u3lemonb 637 u2lemnaa 641 u3lemnaa 642 u4lemnaa 643 u5lemnaa 644 u1lemnoa 660 u2lemnoa 661 u3lemnoa 662 u4lemnoa 663 u5lemnoa 664 u3lemnona 667 u1lemnob 670 u2lemnob 671 u3lemnob 672 u4lemnob 673 u5lemnob 674 u4lemle2 718 u4lem1n 742 u4lem3n 755 u5lem3n 756 u2lem7n 775 u1lem9a 777 u2lem8 782 u3lemax4 796 3vded22 818 salem1 837 orbi 842 neg3antlem2 865 cancellem 891 gomaex3h10 911 gomaex3lem3 916 oa4v3v 934 wdwom 1106 |
Copyright terms: Public domain | W3C validator |