Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > con1 | GIF version |
Description: Contraposition inference. (Contributed by NM, 10-Aug-1997.) |
Ref | Expression |
---|---|
con1.1 | a⊥ = b⊥ |
Ref | Expression |
---|---|
con1 | a = b |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con1.1 | . . 3 a⊥ = b⊥ | |
2 | 1 | ax-r4 37 | . 2 a⊥ ⊥ = b⊥ ⊥ |
3 | ax-a1 30 | . 2 a = a⊥ ⊥ | |
4 | ax-a1 30 | . 2 b = b⊥ ⊥ | |
5 | 2, 3, 4 | 3tr1 63 | 1 a = b |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 |
This theorem was proved from axioms: ax-a1 30 ax-r1 35 ax-r2 36 ax-r4 37 |
This theorem is referenced by: wwcomd 214 k1-4 359 omla 447 fh3 471 fh4 472 u3lemnana 647 u5lemnana 649 u1lemnab 650 u2lemnab 651 u3lemnab 652 u4lemnab 653 u5lemnab 654 u1lemnanb 655 u2lemnanb 656 u3lemnanb 657 u4lemnanb 658 u5lemnanb 659 u1lemnoa 660 u2lemnoa 661 u3lemnoa 662 u4lemnoa 663 u5lemnoa 664 u1lemnona 665 u2lemnona 666 u3lemnona 667 u4lemnona 668 u5lemnona 669 u1lemnob 670 u2lemnob 671 u3lemnob 672 u4lemnob 673 u5lemnob 674 u1lemnonb 675 u3lemnonb 677 u4lemnonb 678 u5lemnonb 679 negantlem7 855 neg3antlem2 865 oa6to4 958 oa8to5 972 mldual 1124 |
Copyright terms: Public domain | W3C validator |