Proof of Theorem i1orni1
Step | Hyp | Ref
| Expression |
1 | | df-i1 44 |
. . . 4
(a⊥ →1
b) = (a⊥ ⊥ ∪
(a⊥ ∩ b)) |
2 | | ax-a1 30 |
. . . . . 6
a = a⊥
⊥ |
3 | 2 | ax-r5 38 |
. . . . 5
(a ∪ (a⊥ ∩ b)) = (a⊥ ⊥ ∪
(a⊥ ∩ b)) |
4 | 3 | ax-r1 35 |
. . . 4
(a⊥
⊥ ∪ (a⊥ ∩ b)) = (a ∪
(a⊥ ∩ b)) |
5 | 1, 4 | ax-r2 36 |
. . 3
(a⊥ →1
b) = (a ∪ (a⊥ ∩ b)) |
6 | 5 | lor 70 |
. 2
((a →1 b) ∪ (a⊥ →1 b)) = ((a
→1 b) ∪ (a ∪ (a⊥ ∩ b))) |
7 | | orordi 112 |
. . 3
((a →1 b) ∪ (a
∪ (a⊥ ∩ b))) = (((a
→1 b) ∪ a) ∪ ((a
→1 b) ∪ (a⊥ ∩ b))) |
8 | | u1lemoa 620 |
. . . . 5
((a →1 b) ∪ a) =
1 |
9 | 8 | ax-r5 38 |
. . . 4
(((a →1 b) ∪ a)
∪ ((a →1 b) ∪ (a⊥ ∩ b))) = (1 ∪ ((a →1 b) ∪ (a⊥ ∩ b))) |
10 | | or1r 105 |
. . . 4
(1 ∪ ((a →1
b) ∪ (a⊥ ∩ b))) = 1 |
11 | 9, 10 | ax-r2 36 |
. . 3
(((a →1 b) ∪ a)
∪ ((a →1 b) ∪ (a⊥ ∩ b))) = 1 |
12 | 7, 11 | ax-r2 36 |
. 2
((a →1 b) ∪ (a
∪ (a⊥ ∩ b))) = 1 |
13 | 6, 12 | ax-r2 36 |
1
((a →1 b) ∪ (a⊥ →1 b)) = 1 |