Proof of Theorem u5lemanb
| Step | Hyp | Ref
| Expression |
| 1 | | df-i5 48 |
. . 3
(a →5 b) = (((a ∩
b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) |
| 2 | 1 | ran 78 |
. 2
((a →5 b) ∩ b⊥ ) = ((((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ b⊥ ) |
| 3 | | comanr2 465 |
. . . . . 6
b C (a ∩ b) |
| 4 | 3 | comcom3 454 |
. . . . 5
b⊥ C
(a ∩ b) |
| 5 | | comanr2 465 |
. . . . . 6
b C (a⊥ ∩ b) |
| 6 | 5 | comcom3 454 |
. . . . 5
b⊥ C
(a⊥ ∩ b) |
| 7 | 4, 6 | com2or 483 |
. . . 4
b⊥ C
((a ∩ b) ∪ (a⊥ ∩ b)) |
| 8 | | comanr2 465 |
. . . 4
b⊥ C
(a⊥ ∩ b⊥ ) |
| 9 | 7, 8 | fh1r 473 |
. . 3
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ b⊥ ) = ((((a ∩ b) ∪
(a⊥ ∩ b)) ∩ b⊥ ) ∪ ((a⊥ ∩ b⊥ ) ∩ b⊥ )) |
| 10 | | ax-a2 31 |
. . . 4
((((a ∩ b) ∪ (a⊥ ∩ b)) ∩ b⊥ ) ∪ ((a⊥ ∩ b⊥ ) ∩ b⊥ )) = (((a⊥ ∩ b⊥ ) ∩ b⊥ ) ∪ (((a ∩ b) ∪
(a⊥ ∩ b)) ∩ b⊥ )) |
| 11 | | anass 76 |
. . . . . . 7
((a⊥ ∩ b⊥ ) ∩ b⊥ ) = (a⊥ ∩ (b⊥ ∩ b⊥ )) |
| 12 | | anidm 111 |
. . . . . . . 8
(b⊥ ∩ b⊥ ) = b⊥ |
| 13 | 12 | lan 77 |
. . . . . . 7
(a⊥ ∩ (b⊥ ∩ b⊥ )) = (a⊥ ∩ b⊥ ) |
| 14 | 11, 13 | ax-r2 36 |
. . . . . 6
((a⊥ ∩ b⊥ ) ∩ b⊥ ) = (a⊥ ∩ b⊥ ) |
| 15 | 4, 6 | fh1r 473 |
. . . . . . 7
(((a ∩ b) ∪ (a⊥ ∩ b)) ∩ b⊥ ) = (((a ∩ b) ∩
b⊥ ) ∪ ((a⊥ ∩ b) ∩ b⊥ )) |
| 16 | | anass 76 |
. . . . . . . . . 10
((a ∩ b) ∩ b⊥ ) = (a ∩ (b ∩
b⊥ )) |
| 17 | | dff 101 |
. . . . . . . . . . . . 13
0 = (b ∩ b⊥ ) |
| 18 | 17 | lan 77 |
. . . . . . . . . . . 12
(a ∩ 0) = (a ∩ (b ∩
b⊥ )) |
| 19 | 18 | ax-r1 35 |
. . . . . . . . . . 11
(a ∩ (b ∩ b⊥ )) = (a ∩ 0) |
| 20 | | an0 108 |
. . . . . . . . . . 11
(a ∩ 0) = 0 |
| 21 | 19, 20 | ax-r2 36 |
. . . . . . . . . 10
(a ∩ (b ∩ b⊥ )) = 0 |
| 22 | 16, 21 | ax-r2 36 |
. . . . . . . . 9
((a ∩ b) ∩ b⊥ ) = 0 |
| 23 | | anass 76 |
. . . . . . . . . 10
((a⊥ ∩ b) ∩ b⊥ ) = (a⊥ ∩ (b ∩ b⊥ )) |
| 24 | 17 | lan 77 |
. . . . . . . . . . . 12
(a⊥ ∩ 0) =
(a⊥ ∩ (b ∩ b⊥ )) |
| 25 | 24 | ax-r1 35 |
. . . . . . . . . . 11
(a⊥ ∩ (b ∩ b⊥ )) = (a⊥ ∩ 0) |
| 26 | | an0 108 |
. . . . . . . . . . 11
(a⊥ ∩ 0) =
0 |
| 27 | 25, 26 | ax-r2 36 |
. . . . . . . . . 10
(a⊥ ∩ (b ∩ b⊥ )) = 0 |
| 28 | 23, 27 | ax-r2 36 |
. . . . . . . . 9
((a⊥ ∩ b) ∩ b⊥ ) = 0 |
| 29 | 22, 28 | 2or 72 |
. . . . . . . 8
(((a ∩ b) ∩ b⊥ ) ∪ ((a⊥ ∩ b) ∩ b⊥ )) = (0 ∪
0) |
| 30 | | or0 102 |
. . . . . . . 8
(0 ∪ 0) = 0 |
| 31 | 29, 30 | ax-r2 36 |
. . . . . . 7
(((a ∩ b) ∩ b⊥ ) ∪ ((a⊥ ∩ b) ∩ b⊥ )) = 0 |
| 32 | 15, 31 | ax-r2 36 |
. . . . . 6
(((a ∩ b) ∪ (a⊥ ∩ b)) ∩ b⊥ ) = 0 |
| 33 | 14, 32 | 2or 72 |
. . . . 5
(((a⊥ ∩
b⊥ ) ∩ b⊥ ) ∪ (((a ∩ b) ∪
(a⊥ ∩ b)) ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ 0) |
| 34 | | or0 102 |
. . . . 5
((a⊥ ∩ b⊥ ) ∪ 0) = (a⊥ ∩ b⊥ ) |
| 35 | 33, 34 | ax-r2 36 |
. . . 4
(((a⊥ ∩
b⊥ ) ∩ b⊥ ) ∪ (((a ∩ b) ∪
(a⊥ ∩ b)) ∩ b⊥ )) = (a⊥ ∩ b⊥ ) |
| 36 | 10, 35 | ax-r2 36 |
. . 3
((((a ∩ b) ∪ (a⊥ ∩ b)) ∩ b⊥ ) ∪ ((a⊥ ∩ b⊥ ) ∩ b⊥ )) = (a⊥ ∩ b⊥ ) |
| 37 | 9, 36 | ax-r2 36 |
. 2
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ b⊥ ) = (a⊥ ∩ b⊥ ) |
| 38 | 2, 37 | ax-r2 36 |
1
((a →5 b) ∩ b⊥ ) = (a⊥ ∩ b⊥ ) |