| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > u2lemnab | GIF version | ||
| Description: Lemma for Dishkant implication study. (Contributed by NM, 16-Dec-1997.) |
| Ref | Expression |
|---|---|
| u2lemnab | ((a →2 b)⊥ ∩ b) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | u2lemonb 636 | . . 3 ((a →2 b) ∪ b⊥ ) = 1 | |
| 2 | oran1 91 | . . 3 ((a →2 b) ∪ b⊥ ) = ((a →2 b)⊥ ∩ b)⊥ | |
| 3 | df-f 42 | . . . . 5 0 = 1⊥ | |
| 4 | 3 | con2 67 | . . . 4 0⊥ = 1 |
| 5 | 4 | ax-r1 35 | . . 3 1 = 0⊥ |
| 6 | 1, 2, 5 | 3tr2 64 | . 2 ((a →2 b)⊥ ∩ b)⊥ = 0⊥ |
| 7 | 6 | con1 66 | 1 ((a →2 b)⊥ ∩ b) = 0 |
| Colors of variables: term |
| Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 1wt 8 0wf 9 →2 wi2 13 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i2 45 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |