Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > oran1 | GIF version |
Description: Disjunction expressed with conjunction. (Contributed by NM, 15-Dec-1997.) |
Ref | Expression |
---|---|
oran1 | (a ∪ b⊥ ) = (a⊥ ∩ b)⊥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anor2 89 | . . 3 (a⊥ ∩ b) = (a ∪ b⊥ )⊥ | |
2 | 1 | ax-r1 35 | . 2 (a ∪ b⊥ )⊥ = (a⊥ ∩ b) |
3 | 2 | con3 68 | 1 (a ∪ b⊥ ) = (a⊥ ∩ b)⊥ |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 |
This theorem is referenced by: k1-4 359 u3lemnana 647 u5lemnana 649 u1lemnab 650 u2lemnab 651 u3lemnab 652 u4lemnab 653 u5lemnab 654 u4lem1n 742 u3lem3n 754 u4lem5 764 u3lem10 785 u3lem11 786 u3lem11a 787 neg3antlem2 865 marsdenlem4 883 mlaconjo 886 oa4v3v 934 lem3.3.4 1053 |
Copyright terms: Public domain | W3C validator |