Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > u3lemnab | GIF version |
Description: Lemma for Kalmbach implication study. (Contributed by NM, 16-Dec-1997.) |
Ref | Expression |
---|---|
u3lemnab | ((a →3 b)⊥ ∩ b) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | u3lemonb 637 | . . 3 ((a →3 b) ∪ b⊥ ) = 1 | |
2 | oran1 91 | . . 3 ((a →3 b) ∪ b⊥ ) = ((a →3 b)⊥ ∩ b)⊥ | |
3 | df-f 42 | . . . . 5 0 = 1⊥ | |
4 | 3 | con2 67 | . . . 4 0⊥ = 1 |
5 | 4 | ax-r1 35 | . . 3 1 = 0⊥ |
6 | 1, 2, 5 | 3tr2 64 | . 2 ((a →3 b)⊥ ∩ b)⊥ = 0⊥ |
7 | 6 | con1 66 | 1 ((a →3 b)⊥ ∩ b) = 0 |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 1wt 8 0wf 9 →3 wi3 14 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i3 46 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |