QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  u3lem12 GIF version

Theorem u3lem12 788
Description: Lemma for unified implication study. (Contributed by NM, 18-Jan-1998.)
Assertion
Ref Expression
u3lem12 (a3 (a3 b )) = (ab)

Proof of Theorem u3lem12
StepHypRef Expression
1 lem4 511 . . 3 (a3 (a3 b )) = (ab )
21ax-r4 37 . 2 (a3 (a3 b )) = (ab )
3 df-a 40 . . 3 (ab) = (ab )
43ax-r1 35 . 2 (ab ) = (ab)
52, 4ax-r2 36 1 (a3 (a3 b )) = (ab)
Colors of variables: term
Syntax hints:   = wb 1   wn 4  wo 6  wa 7  3 wi3 14
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i3 46  df-le1 130  df-le2 131  df-c1 132  df-c2 133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator