Proof of Theorem lem4
| Step | Hyp | Ref
| Expression |
| 1 | | df-i3 46 |
. 2
(a →3 (a →3 b)) = (((a⊥ ∩ (a →3 b)) ∪ (a⊥ ∩ (a →3 b)⊥ )) ∪ (a ∩ (a⊥ ∪ (a →3 b)))) |
| 2 | | df-i3 46 |
. . . . . . . 8
(a →3 b) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) |
| 3 | 2 | lan 77 |
. . . . . . 7
(a⊥ ∩ (a →3 b)) = (a⊥ ∩ (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b)))) |
| 4 | | lea 160 |
. . . . . . . . . . . . 13
(a⊥ ∩ b) ≤ a⊥ |
| 5 | | lea 160 |
. . . . . . . . . . . . 13
(a⊥ ∩ b⊥ ) ≤ a⊥ |
| 6 | 4, 5 | le2or 168 |
. . . . . . . . . . . 12
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ≤ (a⊥ ∪ a⊥ ) |
| 7 | | oridm 110 |
. . . . . . . . . . . 12
(a⊥ ∪ a⊥ ) = a⊥ |
| 8 | 6, 7 | lbtr 139 |
. . . . . . . . . . 11
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ≤ a⊥ |
| 9 | 8 | lecom 180 |
. . . . . . . . . 10
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) C a⊥ |
| 10 | 9 | comcom 453 |
. . . . . . . . 9
a⊥ C
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
| 11 | | lea 160 |
. . . . . . . . . . . 12
(a ∩ (a⊥ ∪ b)) ≤ a |
| 12 | 11 | lecom 180 |
. . . . . . . . . . 11
(a ∩ (a⊥ ∪ b)) C a |
| 13 | 12 | comcom 453 |
. . . . . . . . . 10
a C (a ∩ (a⊥ ∪ b)) |
| 14 | 13 | comcom3 454 |
. . . . . . . . 9
a⊥ C
(a ∩ (a⊥ ∪ b)) |
| 15 | 10, 14 | fh1 469 |
. . . . . . . 8
(a⊥ ∩
(((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b)))) = ((a⊥ ∩ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ (a⊥ ∩ (a ∩ (a⊥ ∪ b)))) |
| 16 | | ancom 74 |
. . . . . . . . . . 11
((a⊥ ∩ a) ∩ (a⊥ ∪ b)) = ((a⊥ ∪ b) ∩ (a⊥ ∩ a)) |
| 17 | | anass 76 |
. . . . . . . . . . 11
((a⊥ ∩ a) ∩ (a⊥ ∪ b)) = (a⊥ ∩ (a ∩ (a⊥ ∪ b))) |
| 18 | | dff 101 |
. . . . . . . . . . . . . . 15
0 = (a ∩ a⊥ ) |
| 19 | | ancom 74 |
. . . . . . . . . . . . . . 15
(a ∩ a⊥ ) = (a⊥ ∩ a) |
| 20 | 18, 19 | ax-r2 36 |
. . . . . . . . . . . . . 14
0 = (a⊥ ∩
a) |
| 21 | 20 | lan 77 |
. . . . . . . . . . . . 13
((a⊥ ∪ b) ∩ 0) = ((a⊥ ∪ b) ∩ (a⊥ ∩ a)) |
| 22 | 21 | ax-r1 35 |
. . . . . . . . . . . 12
((a⊥ ∪ b) ∩ (a⊥ ∩ a)) = ((a⊥ ∪ b) ∩ 0) |
| 23 | | an0 108 |
. . . . . . . . . . . 12
((a⊥ ∪ b) ∩ 0) = 0 |
| 24 | 22, 23 | ax-r2 36 |
. . . . . . . . . . 11
((a⊥ ∪ b) ∩ (a⊥ ∩ a)) = 0 |
| 25 | 16, 17, 24 | 3tr2 64 |
. . . . . . . . . 10
(a⊥ ∩ (a ∩ (a⊥ ∪ b))) = 0 |
| 26 | 25 | lor 70 |
. . . . . . . . 9
((a⊥ ∩
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ (a⊥ ∩ (a ∩ (a⊥ ∪ b)))) = ((a⊥ ∩ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ 0) |
| 27 | | or0 102 |
. . . . . . . . . 10
((a⊥ ∩
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ 0) = (a⊥ ∩ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
| 28 | | ancom 74 |
. . . . . . . . . . 11
(a⊥ ∩
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∩ a⊥ ) |
| 29 | 8 | df2le2 136 |
. . . . . . . . . . 11
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∩ a⊥ ) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
| 30 | 28, 29 | ax-r2 36 |
. . . . . . . . . 10
(a⊥ ∩
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
| 31 | 27, 30 | ax-r2 36 |
. . . . . . . . 9
((a⊥ ∩
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ 0) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
| 32 | 26, 31 | ax-r2 36 |
. . . . . . . 8
((a⊥ ∩
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ (a⊥ ∩ (a ∩ (a⊥ ∪ b)))) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
| 33 | 15, 32 | ax-r2 36 |
. . . . . . 7
(a⊥ ∩
(((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b)))) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
| 34 | 3, 33 | ax-r2 36 |
. . . . . 6
(a⊥ ∩ (a →3 b)) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
| 35 | 2 | lor 70 |
. . . . . . . . 9
(a ∪ (a →3 b)) = (a ∪
(((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b)))) |
| 36 | | orordi 112 |
. . . . . . . . . 10
(a ∪ (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b)))) = ((a
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ (a ∪ (a ∩
(a⊥ ∪ b)))) |
| 37 | | orabs 120 |
. . . . . . . . . . . 12
(a ∪ (a ∩ (a⊥ ∪ b))) = a |
| 38 | 37 | lor 70 |
. . . . . . . . . . 11
((a ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ (a ∪ (a ∩
(a⊥ ∪ b)))) = ((a
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ a) |
| 39 | | or32 82 |
. . . . . . . . . . . 12
((a ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ a) = ((a ∪
a) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
| 40 | | oridm 110 |
. . . . . . . . . . . . 13
(a ∪ a) = a |
| 41 | 40 | ax-r5 38 |
. . . . . . . . . . . 12
((a ∪ a) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = (a ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
| 42 | 39, 41 | ax-r2 36 |
. . . . . . . . . . 11
((a ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ a) = (a ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
| 43 | 38, 42 | ax-r2 36 |
. . . . . . . . . 10
((a ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ (a ∪ (a ∩
(a⊥ ∪ b)))) = (a ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
| 44 | 36, 43 | ax-r2 36 |
. . . . . . . . 9
(a ∪ (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b)))) = (a ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
| 45 | 35, 44 | ax-r2 36 |
. . . . . . . 8
(a ∪ (a →3 b)) = (a ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
| 46 | 45 | ax-r4 37 |
. . . . . . 7
(a ∪ (a →3 b))⊥ = (a ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥
)))⊥ |
| 47 | | oran 87 |
. . . . . . . 8
(a ∪ (a →3 b)) = (a⊥ ∩ (a →3 b)⊥
)⊥ |
| 48 | 47 | con2 67 |
. . . . . . 7
(a ∪ (a →3 b))⊥ = (a⊥ ∩ (a →3 b)⊥ ) |
| 49 | | oran 87 |
. . . . . . . . 9
(a ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = (a⊥ ∩ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))⊥
)⊥ |
| 50 | 49 | con2 67 |
. . . . . . . 8
(a ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )))⊥ =
(a⊥ ∩ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))⊥
) |
| 51 | | ancom 74 |
. . . . . . . 8
(a⊥ ∩
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))⊥ ) =
(((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))⊥ ∩
a⊥ ) |
| 52 | 50, 51 | ax-r2 36 |
. . . . . . 7
(a ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )))⊥ =
(((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))⊥ ∩
a⊥ ) |
| 53 | 46, 48, 52 | 3tr2 64 |
. . . . . 6
(a⊥ ∩ (a →3 b)⊥ ) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))⊥ ∩
a⊥ ) |
| 54 | 34, 53 | 2or 72 |
. . . . 5
((a⊥ ∩
(a →3 b)) ∪ (a⊥ ∩ (a →3 b)⊥ )) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))⊥ ∩
a⊥ )) |
| 55 | 8 | oml2 451 |
. . . . 5
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))⊥ ∩
a⊥ )) = a⊥ |
| 56 | 54, 55 | ax-r2 36 |
. . . 4
((a⊥ ∩
(a →3 b)) ∪ (a⊥ ∩ (a →3 b)⊥ )) = a⊥ |
| 57 | 2 | lor 70 |
. . . . . . 7
(a⊥ ∪ (a →3 b)) = (a⊥ ∪ (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b)))) |
| 58 | | ax-a3 32 |
. . . . . . . . 9
((a⊥ ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ (a ∩ (a⊥ ∪ b))) = (a⊥ ∪ (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b)))) |
| 59 | 58 | ax-r1 35 |
. . . . . . . 8
(a⊥ ∪
(((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b)))) = ((a⊥ ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ (a ∩ (a⊥ ∪ b))) |
| 60 | | orordi 112 |
. . . . . . . . . 10
(a⊥ ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = ((a⊥ ∪ (a⊥ ∩ b)) ∪ (a⊥ ∪ (a⊥ ∩ b⊥ ))) |
| 61 | | orabs 120 |
. . . . . . . . . . . 12
(a⊥ ∪ (a⊥ ∩ b)) = a⊥ |
| 62 | | orabs 120 |
. . . . . . . . . . . 12
(a⊥ ∪ (a⊥ ∩ b⊥ )) = a⊥ |
| 63 | 61, 62 | 2or 72 |
. . . . . . . . . . 11
((a⊥ ∪
(a⊥ ∩ b)) ∪ (a⊥ ∪ (a⊥ ∩ b⊥ ))) = (a⊥ ∪ a⊥ ) |
| 64 | 63, 7 | ax-r2 36 |
. . . . . . . . . 10
((a⊥ ∪
(a⊥ ∩ b)) ∪ (a⊥ ∪ (a⊥ ∩ b⊥ ))) = a⊥ |
| 65 | 60, 64 | ax-r2 36 |
. . . . . . . . 9
(a⊥ ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = a⊥ |
| 66 | 65 | ax-r5 38 |
. . . . . . . 8
((a⊥ ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ (a ∩ (a⊥ ∪ b))) = (a⊥ ∪ (a ∩ (a⊥ ∪ b))) |
| 67 | 59, 66 | ax-r2 36 |
. . . . . . 7
(a⊥ ∪
(((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b)))) = (a⊥ ∪ (a ∩ (a⊥ ∪ b))) |
| 68 | 57, 67 | ax-r2 36 |
. . . . . 6
(a⊥ ∪ (a →3 b)) = (a⊥ ∪ (a ∩ (a⊥ ∪ b))) |
| 69 | | omln 446 |
. . . . . 6
(a⊥ ∪ (a ∩ (a⊥ ∪ b))) = (a⊥ ∪ b) |
| 70 | 68, 69 | ax-r2 36 |
. . . . 5
(a⊥ ∪ (a →3 b)) = (a⊥ ∪ b) |
| 71 | 70 | lan 77 |
. . . 4
(a ∩ (a⊥ ∪ (a →3 b))) = (a ∩
(a⊥ ∪ b)) |
| 72 | 56, 71 | 2or 72 |
. . 3
(((a⊥ ∩
(a →3 b)) ∪ (a⊥ ∩ (a →3 b)⊥ )) ∪ (a ∩ (a⊥ ∪ (a →3 b)))) = (a⊥ ∪ (a ∩ (a⊥ ∪ b))) |
| 73 | 72, 69 | ax-r2 36 |
. 2
(((a⊥ ∩
(a →3 b)) ∪ (a⊥ ∩ (a →3 b)⊥ )) ∪ (a ∩ (a⊥ ∪ (a →3 b)))) = (a⊥ ∪ b) |
| 74 | 1, 73 | ax-r2 36 |
1
(a →3 (a →3 b)) = (a⊥ ∪ b) |