Proof of Theorem lem4
Step | Hyp | Ref
| Expression |
1 | | df-i3 46 |
. 2
(a →3 (a →3 b)) = (((a⊥ ∩ (a →3 b)) ∪ (a⊥ ∩ (a →3 b)⊥ )) ∪ (a ∩ (a⊥ ∪ (a →3 b)))) |
2 | | df-i3 46 |
. . . . . . . 8
(a →3 b) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) |
3 | 2 | lan 77 |
. . . . . . 7
(a⊥ ∩ (a →3 b)) = (a⊥ ∩ (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b)))) |
4 | | lea 160 |
. . . . . . . . . . . . 13
(a⊥ ∩ b) ≤ a⊥ |
5 | | lea 160 |
. . . . . . . . . . . . 13
(a⊥ ∩ b⊥ ) ≤ a⊥ |
6 | 4, 5 | le2or 168 |
. . . . . . . . . . . 12
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ≤ (a⊥ ∪ a⊥ ) |
7 | | oridm 110 |
. . . . . . . . . . . 12
(a⊥ ∪ a⊥ ) = a⊥ |
8 | 6, 7 | lbtr 139 |
. . . . . . . . . . 11
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ≤ a⊥ |
9 | 8 | lecom 180 |
. . . . . . . . . 10
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) C a⊥ |
10 | 9 | comcom 453 |
. . . . . . . . 9
a⊥ C
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
11 | | lea 160 |
. . . . . . . . . . . 12
(a ∩ (a⊥ ∪ b)) ≤ a |
12 | 11 | lecom 180 |
. . . . . . . . . . 11
(a ∩ (a⊥ ∪ b)) C a |
13 | 12 | comcom 453 |
. . . . . . . . . 10
a C (a ∩ (a⊥ ∪ b)) |
14 | 13 | comcom3 454 |
. . . . . . . . 9
a⊥ C
(a ∩ (a⊥ ∪ b)) |
15 | 10, 14 | fh1 469 |
. . . . . . . 8
(a⊥ ∩
(((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b)))) = ((a⊥ ∩ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ (a⊥ ∩ (a ∩ (a⊥ ∪ b)))) |
16 | | ancom 74 |
. . . . . . . . . . 11
((a⊥ ∩ a) ∩ (a⊥ ∪ b)) = ((a⊥ ∪ b) ∩ (a⊥ ∩ a)) |
17 | | anass 76 |
. . . . . . . . . . 11
((a⊥ ∩ a) ∩ (a⊥ ∪ b)) = (a⊥ ∩ (a ∩ (a⊥ ∪ b))) |
18 | | dff 101 |
. . . . . . . . . . . . . . 15
0 = (a ∩ a⊥ ) |
19 | | ancom 74 |
. . . . . . . . . . . . . . 15
(a ∩ a⊥ ) = (a⊥ ∩ a) |
20 | 18, 19 | ax-r2 36 |
. . . . . . . . . . . . . 14
0 = (a⊥ ∩
a) |
21 | 20 | lan 77 |
. . . . . . . . . . . . 13
((a⊥ ∪ b) ∩ 0) = ((a⊥ ∪ b) ∩ (a⊥ ∩ a)) |
22 | 21 | ax-r1 35 |
. . . . . . . . . . . 12
((a⊥ ∪ b) ∩ (a⊥ ∩ a)) = ((a⊥ ∪ b) ∩ 0) |
23 | | an0 108 |
. . . . . . . . . . . 12
((a⊥ ∪ b) ∩ 0) = 0 |
24 | 22, 23 | ax-r2 36 |
. . . . . . . . . . 11
((a⊥ ∪ b) ∩ (a⊥ ∩ a)) = 0 |
25 | 16, 17, 24 | 3tr2 64 |
. . . . . . . . . 10
(a⊥ ∩ (a ∩ (a⊥ ∪ b))) = 0 |
26 | 25 | lor 70 |
. . . . . . . . 9
((a⊥ ∩
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ (a⊥ ∩ (a ∩ (a⊥ ∪ b)))) = ((a⊥ ∩ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ 0) |
27 | | or0 102 |
. . . . . . . . . 10
((a⊥ ∩
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ 0) = (a⊥ ∩ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
28 | | ancom 74 |
. . . . . . . . . . 11
(a⊥ ∩
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∩ a⊥ ) |
29 | 8 | df2le2 136 |
. . . . . . . . . . 11
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∩ a⊥ ) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
30 | 28, 29 | ax-r2 36 |
. . . . . . . . . 10
(a⊥ ∩
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
31 | 27, 30 | ax-r2 36 |
. . . . . . . . 9
((a⊥ ∩
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ 0) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
32 | 26, 31 | ax-r2 36 |
. . . . . . . 8
((a⊥ ∩
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ (a⊥ ∩ (a ∩ (a⊥ ∪ b)))) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
33 | 15, 32 | ax-r2 36 |
. . . . . . 7
(a⊥ ∩
(((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b)))) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
34 | 3, 33 | ax-r2 36 |
. . . . . 6
(a⊥ ∩ (a →3 b)) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
35 | 2 | lor 70 |
. . . . . . . . 9
(a ∪ (a →3 b)) = (a ∪
(((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b)))) |
36 | | orordi 112 |
. . . . . . . . . 10
(a ∪ (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b)))) = ((a
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ (a ∪ (a ∩
(a⊥ ∪ b)))) |
37 | | orabs 120 |
. . . . . . . . . . . 12
(a ∪ (a ∩ (a⊥ ∪ b))) = a |
38 | 37 | lor 70 |
. . . . . . . . . . 11
((a ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ (a ∪ (a ∩
(a⊥ ∪ b)))) = ((a
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ a) |
39 | | or32 82 |
. . . . . . . . . . . 12
((a ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ a) = ((a ∪
a) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
40 | | oridm 110 |
. . . . . . . . . . . . 13
(a ∪ a) = a |
41 | 40 | ax-r5 38 |
. . . . . . . . . . . 12
((a ∪ a) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = (a ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
42 | 39, 41 | ax-r2 36 |
. . . . . . . . . . 11
((a ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ a) = (a ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
43 | 38, 42 | ax-r2 36 |
. . . . . . . . . 10
((a ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ (a ∪ (a ∩
(a⊥ ∪ b)))) = (a ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
44 | 36, 43 | ax-r2 36 |
. . . . . . . . 9
(a ∪ (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b)))) = (a ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
45 | 35, 44 | ax-r2 36 |
. . . . . . . 8
(a ∪ (a →3 b)) = (a ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
46 | 45 | ax-r4 37 |
. . . . . . 7
(a ∪ (a →3 b))⊥ = (a ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥
)))⊥ |
47 | | oran 87 |
. . . . . . . 8
(a ∪ (a →3 b)) = (a⊥ ∩ (a →3 b)⊥
)⊥ |
48 | 47 | con2 67 |
. . . . . . 7
(a ∪ (a →3 b))⊥ = (a⊥ ∩ (a →3 b)⊥ ) |
49 | | oran 87 |
. . . . . . . . 9
(a ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = (a⊥ ∩ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))⊥
)⊥ |
50 | 49 | con2 67 |
. . . . . . . 8
(a ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )))⊥ =
(a⊥ ∩ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))⊥
) |
51 | | ancom 74 |
. . . . . . . 8
(a⊥ ∩
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))⊥ ) =
(((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))⊥ ∩
a⊥ ) |
52 | 50, 51 | ax-r2 36 |
. . . . . . 7
(a ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )))⊥ =
(((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))⊥ ∩
a⊥ ) |
53 | 46, 48, 52 | 3tr2 64 |
. . . . . 6
(a⊥ ∩ (a →3 b)⊥ ) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))⊥ ∩
a⊥ ) |
54 | 34, 53 | 2or 72 |
. . . . 5
((a⊥ ∩
(a →3 b)) ∪ (a⊥ ∩ (a →3 b)⊥ )) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))⊥ ∩
a⊥ )) |
55 | 8 | oml2 451 |
. . . . 5
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))⊥ ∩
a⊥ )) = a⊥ |
56 | 54, 55 | ax-r2 36 |
. . . 4
((a⊥ ∩
(a →3 b)) ∪ (a⊥ ∩ (a →3 b)⊥ )) = a⊥ |
57 | 2 | lor 70 |
. . . . . . 7
(a⊥ ∪ (a →3 b)) = (a⊥ ∪ (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b)))) |
58 | | ax-a3 32 |
. . . . . . . . 9
((a⊥ ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ (a ∩ (a⊥ ∪ b))) = (a⊥ ∪ (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b)))) |
59 | 58 | ax-r1 35 |
. . . . . . . 8
(a⊥ ∪
(((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b)))) = ((a⊥ ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ (a ∩ (a⊥ ∪ b))) |
60 | | orordi 112 |
. . . . . . . . . 10
(a⊥ ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = ((a⊥ ∪ (a⊥ ∩ b)) ∪ (a⊥ ∪ (a⊥ ∩ b⊥ ))) |
61 | | orabs 120 |
. . . . . . . . . . . 12
(a⊥ ∪ (a⊥ ∩ b)) = a⊥ |
62 | | orabs 120 |
. . . . . . . . . . . 12
(a⊥ ∪ (a⊥ ∩ b⊥ )) = a⊥ |
63 | 61, 62 | 2or 72 |
. . . . . . . . . . 11
((a⊥ ∪
(a⊥ ∩ b)) ∪ (a⊥ ∪ (a⊥ ∩ b⊥ ))) = (a⊥ ∪ a⊥ ) |
64 | 63, 7 | ax-r2 36 |
. . . . . . . . . 10
((a⊥ ∪
(a⊥ ∩ b)) ∪ (a⊥ ∪ (a⊥ ∩ b⊥ ))) = a⊥ |
65 | 60, 64 | ax-r2 36 |
. . . . . . . . 9
(a⊥ ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = a⊥ |
66 | 65 | ax-r5 38 |
. . . . . . . 8
((a⊥ ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ (a ∩ (a⊥ ∪ b))) = (a⊥ ∪ (a ∩ (a⊥ ∪ b))) |
67 | 59, 66 | ax-r2 36 |
. . . . . . 7
(a⊥ ∪
(((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b)))) = (a⊥ ∪ (a ∩ (a⊥ ∪ b))) |
68 | 57, 67 | ax-r2 36 |
. . . . . 6
(a⊥ ∪ (a →3 b)) = (a⊥ ∪ (a ∩ (a⊥ ∪ b))) |
69 | | omln 446 |
. . . . . 6
(a⊥ ∪ (a ∩ (a⊥ ∪ b))) = (a⊥ ∪ b) |
70 | 68, 69 | ax-r2 36 |
. . . . 5
(a⊥ ∪ (a →3 b)) = (a⊥ ∪ b) |
71 | 70 | lan 77 |
. . . 4
(a ∩ (a⊥ ∪ (a →3 b))) = (a ∩
(a⊥ ∪ b)) |
72 | 56, 71 | 2or 72 |
. . 3
(((a⊥ ∩
(a →3 b)) ∪ (a⊥ ∩ (a →3 b)⊥ )) ∪ (a ∩ (a⊥ ∪ (a →3 b)))) = (a⊥ ∪ (a ∩ (a⊥ ∪ b))) |
73 | 72, 69 | ax-r2 36 |
. 2
(((a⊥ ∩
(a →3 b)) ∪ (a⊥ ∩ (a →3 b)⊥ )) ∪ (a ∩ (a⊥ ∪ (a →3 b)))) = (a⊥ ∪ b) |
74 | 1, 73 | ax-r2 36 |
1
(a →3 (a →3 b)) = (a⊥ ∪ b) |