Proof of Theorem u3lem13a
Step | Hyp | Ref
| Expression |
1 | | df-i3 46 |
. 2
(a →3 (a →3 b⊥ )⊥ ) =
(((a⊥ ∩ (a →3 b⊥ )⊥ ) ∪
(a⊥ ∩ (a →3 b⊥ )⊥
⊥ )) ∪ (a ∩
(a⊥ ∪ (a →3 b⊥ )⊥
))) |
2 | | ancom 74 |
. . . . . . 7
(a⊥ ∩ (a →3 b⊥ )⊥ ) =
((a →3 b⊥ )⊥ ∩
a⊥ ) |
3 | | u3lemnana 647 |
. . . . . . 7
((a →3 b⊥ )⊥ ∩
a⊥ ) = (a⊥ ∩ ((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
))) |
4 | 2, 3 | ax-r2 36 |
. . . . . 6
(a⊥ ∩ (a →3 b⊥ )⊥ ) =
(a⊥ ∩ ((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
))) |
5 | | ax-a1 30 |
. . . . . . . . 9
(a →3 b⊥ ) = (a →3 b⊥ )⊥
⊥ |
6 | 5 | ax-r1 35 |
. . . . . . . 8
(a →3 b⊥ )⊥
⊥ = (a →3
b⊥
) |
7 | 6 | lan 77 |
. . . . . . 7
(a⊥ ∩ (a →3 b⊥ )⊥
⊥ ) = (a⊥
∩ (a →3 b⊥ )) |
8 | | ancom 74 |
. . . . . . . 8
(a⊥ ∩ (a →3 b⊥ )) = ((a →3 b⊥ ) ∩ a⊥ ) |
9 | | u3lemana 607 |
. . . . . . . 8
((a →3 b⊥ ) ∩ a⊥ ) = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
)) |
10 | 8, 9 | ax-r2 36 |
. . . . . . 7
(a⊥ ∩ (a →3 b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
)) |
11 | 7, 10 | ax-r2 36 |
. . . . . 6
(a⊥ ∩ (a →3 b⊥ )⊥
⊥ ) = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
)) |
12 | 4, 11 | 2or 72 |
. . . . 5
((a⊥ ∩
(a →3 b⊥ )⊥ ) ∪
(a⊥ ∩ (a →3 b⊥ )⊥
⊥ )) = ((a⊥ ∩ ((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ ))) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
))) |
13 | | comanr1 464 |
. . . . . . . 8
a⊥ C
(a⊥ ∩ b⊥ ) |
14 | | comanr1 464 |
. . . . . . . 8
a⊥ C
(a⊥ ∩ b⊥ ⊥
) |
15 | 13, 14 | com2or 483 |
. . . . . . 7
a⊥ C
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
)) |
16 | | comorr 184 |
. . . . . . . . 9
a C (a ∪ b⊥ ) |
17 | | comorr 184 |
. . . . . . . . 9
a C (a ∪ b⊥ ⊥
) |
18 | 16, 17 | com2an 484 |
. . . . . . . 8
a C ((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
)) |
19 | 18 | comcom3 454 |
. . . . . . 7
a⊥ C
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
)) |
20 | 15, 19 | fh4r 476 |
. . . . . 6
((a⊥ ∩
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ ))) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ ))) =
((a⊥ ∪ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ ))) ∩
(((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
)))) |
21 | | ax-a2 31 |
. . . . . . . . 9
(a⊥ ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ ))) =
(((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) ∪
a⊥ ) |
22 | | lea 160 |
. . . . . . . . . . 11
(a⊥ ∩ b⊥ ) ≤ a⊥ |
23 | | lea 160 |
. . . . . . . . . . 11
(a⊥ ∩ b⊥ ⊥ ) ≤
a⊥ |
24 | 22, 23 | lel2or 170 |
. . . . . . . . . 10
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) ≤
a⊥ |
25 | 24 | df-le2 131 |
. . . . . . . . 9
(((a⊥ ∩
b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) ∪
a⊥ ) = a⊥ |
26 | 21, 25 | ax-r2 36 |
. . . . . . . 8
(a⊥ ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ ))) =
a⊥ |
27 | | anor2 89 |
. . . . . . . . . . . . 13
(a⊥ ∩ b⊥ ) = (a ∪ b⊥ ⊥
)⊥ |
28 | | anor3 90 |
. . . . . . . . . . . . 13
(a⊥ ∩ b⊥ ⊥ ) = (a ∪ b⊥
)⊥ |
29 | 27, 28 | 2or 72 |
. . . . . . . . . . . 12
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) =
((a ∪ b⊥ ⊥
)⊥ ∪ (a ∪ b⊥ )⊥
) |
30 | | ax-a2 31 |
. . . . . . . . . . . 12
((a ∪ b⊥ ⊥
)⊥ ∪ (a ∪ b⊥ )⊥ ) =
((a ∪ b⊥ )⊥ ∪
(a ∪ b⊥ ⊥
)⊥ ) |
31 | 29, 30 | ax-r2 36 |
. . . . . . . . . . 11
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) =
((a ∪ b⊥ )⊥ ∪
(a ∪ b⊥ ⊥
)⊥ ) |
32 | | oran3 93 |
. . . . . . . . . . 11
((a ∪ b⊥ )⊥ ∪
(a ∪ b⊥ ⊥
)⊥ ) = ((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
))⊥ |
33 | 31, 32 | ax-r2 36 |
. . . . . . . . . 10
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) =
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
))⊥ |
34 | 33 | lor 70 |
. . . . . . . . 9
(((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ ))) =
(((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) ∪
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
))⊥ ) |
35 | | df-t 41 |
. . . . . . . . . 10
1 = (((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) ∪
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
))⊥ ) |
36 | 35 | ax-r1 35 |
. . . . . . . . 9
(((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) ∪
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
))⊥ ) = 1 |
37 | 34, 36 | ax-r2 36 |
. . . . . . . 8
(((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ ))) =
1 |
38 | 26, 37 | 2an 79 |
. . . . . . 7
((a⊥ ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ ))) ∩
(((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )))) =
(a⊥ ∩
1) |
39 | | an1 106 |
. . . . . . 7
(a⊥ ∩ 1) =
a⊥ |
40 | 38, 39 | ax-r2 36 |
. . . . . 6
((a⊥ ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ ))) ∩
(((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )))) =
a⊥ |
41 | 20, 40 | ax-r2 36 |
. . . . 5
((a⊥ ∩
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ ))) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ ))) =
a⊥ |
42 | 12, 41 | ax-r2 36 |
. . . 4
((a⊥ ∩
(a →3 b⊥ )⊥ ) ∪
(a⊥ ∩ (a →3 b⊥ )⊥
⊥ )) = a⊥ |
43 | | comid 187 |
. . . . . . 7
a C a |
44 | 43 | comcom2 183 |
. . . . . 6
a C a⊥ |
45 | | comi31 508 |
. . . . . . 7
a C (a →3 b⊥ ) |
46 | 45 | comcom2 183 |
. . . . . 6
a C (a →3 b⊥
)⊥ |
47 | 44, 46 | fh1 469 |
. . . . 5
(a ∩ (a⊥ ∪ (a →3 b⊥ )⊥ )) =
((a ∩ a⊥ ) ∪ (a ∩ (a
→3 b⊥
)⊥ )) |
48 | | dff 101 |
. . . . . . . 8
0 = (a ∩ a⊥ ) |
49 | 48 | ax-r1 35 |
. . . . . . 7
(a ∩ a⊥ ) = 0 |
50 | | ancom 74 |
. . . . . . . 8
(a ∩ (a →3 b⊥ )⊥ ) =
((a →3 b⊥ )⊥ ∩
a) |
51 | | u3lemnaa 642 |
. . . . . . . 8
((a →3 b⊥ )⊥ ∩
a) = (a
∩ b⊥
⊥ ) |
52 | 50, 51 | ax-r2 36 |
. . . . . . 7
(a ∩ (a →3 b⊥ )⊥ ) =
(a ∩ b⊥ ⊥
) |
53 | 49, 52 | 2or 72 |
. . . . . 6
((a ∩ a⊥ ) ∪ (a ∩ (a
→3 b⊥
)⊥ )) = (0 ∪ (a ∩
b⊥ ⊥
)) |
54 | | ax-a2 31 |
. . . . . . 7
(0 ∪ (a ∩ b⊥ ⊥ )) =
((a ∩ b⊥ ⊥ ) ∪
0) |
55 | | or0 102 |
. . . . . . 7
((a ∩ b⊥ ⊥ ) ∪ 0) =
(a ∩ b⊥ ⊥
) |
56 | 54, 55 | ax-r2 36 |
. . . . . 6
(0 ∪ (a ∩ b⊥ ⊥ )) =
(a ∩ b⊥ ⊥
) |
57 | 53, 56 | ax-r2 36 |
. . . . 5
((a ∩ a⊥ ) ∪ (a ∩ (a
→3 b⊥
)⊥ )) = (a ∩ b⊥ ⊥
) |
58 | 47, 57 | ax-r2 36 |
. . . 4
(a ∩ (a⊥ ∪ (a →3 b⊥ )⊥ )) =
(a ∩ b⊥ ⊥
) |
59 | 42, 58 | 2or 72 |
. . 3
(((a⊥ ∩
(a →3 b⊥ )⊥ ) ∪
(a⊥ ∩ (a →3 b⊥ )⊥
⊥ )) ∪ (a ∩
(a⊥ ∪ (a →3 b⊥ )⊥ ))) =
(a⊥ ∪ (a ∩ b⊥ ⊥
)) |
60 | | ax-a1 30 |
. . . . . . 7
b = b⊥
⊥ |
61 | 60 | ax-r1 35 |
. . . . . 6
b⊥
⊥ = b |
62 | 61 | lan 77 |
. . . . 5
(a ∩ b⊥ ⊥ ) = (a ∩ b) |
63 | 62 | lor 70 |
. . . 4
(a⊥ ∪ (a ∩ b⊥ ⊥ )) =
(a⊥ ∪ (a ∩ b)) |
64 | | df-i1 44 |
. . . . 5
(a →1 b) = (a⊥ ∪ (a ∩ b)) |
65 | 64 | ax-r1 35 |
. . . 4
(a⊥ ∪ (a ∩ b)) =
(a →1 b) |
66 | 63, 65 | ax-r2 36 |
. . 3
(a⊥ ∪ (a ∩ b⊥ ⊥ )) =
(a →1 b) |
67 | 59, 66 | ax-r2 36 |
. 2
(((a⊥ ∩
(a →3 b⊥ )⊥ ) ∪
(a⊥ ∩ (a →3 b⊥ )⊥
⊥ )) ∪ (a ∩
(a⊥ ∪ (a →3 b⊥ )⊥ ))) =
(a →1 b) |
68 | 1, 67 | ax-r2 36 |
1
(a →3 (a →3 b⊥ )⊥ ) =
(a →1 b) |