Proof of Theorem u4lem3n
Step | Hyp | Ref
| Expression |
1 | | u4lem3 752 |
. . 3
(a →4 (b →4 a)) = (a⊥ ∪ ((a ∩ b) ∪
(a ∩ b⊥ ))) |
2 | | ax-a2 31 |
. . . . . 6
((a ∩ b) ∪ (a
∩ b⊥ )) = ((a ∩ b⊥ ) ∪ (a ∩ b)) |
3 | | anor1 88 |
. . . . . . . 8
(a ∩ b⊥ ) = (a⊥ ∪ b)⊥ |
4 | | df-a 40 |
. . . . . . . 8
(a ∩ b) = (a⊥ ∪ b⊥
)⊥ |
5 | 3, 4 | 2or 72 |
. . . . . . 7
((a ∩ b⊥ ) ∪ (a ∩ b)) =
((a⊥ ∪ b)⊥ ∪ (a⊥ ∪ b⊥ )⊥
) |
6 | | oran3 93 |
. . . . . . 7
((a⊥ ∪ b)⊥ ∪ (a⊥ ∪ b⊥ )⊥ ) =
((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥
))⊥ |
7 | 5, 6 | ax-r2 36 |
. . . . . 6
((a ∩ b⊥ ) ∪ (a ∩ b)) =
((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥
))⊥ |
8 | 2, 7 | ax-r2 36 |
. . . . 5
((a ∩ b) ∪ (a
∩ b⊥ )) = ((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥
))⊥ |
9 | 8 | lor 70 |
. . . 4
(a⊥ ∪
((a ∩ b) ∪ (a
∩ b⊥ ))) = (a⊥ ∪ ((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ ))⊥
) |
10 | | oran3 93 |
. . . 4
(a⊥ ∪
((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ ))⊥ ) =
(a ∩ ((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥
)))⊥ |
11 | 9, 10 | ax-r2 36 |
. . 3
(a⊥ ∪
((a ∩ b) ∪ (a
∩ b⊥ ))) = (a ∩ ((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥
)))⊥ |
12 | 1, 11 | ax-r2 36 |
. 2
(a →4 (b →4 a)) = (a ∩
((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥
)))⊥ |
13 | 12 | con2 67 |
1
(a →4 (b →4 a))⊥ = (a ∩ ((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ ))) |