QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  u4lem3n GIF version

Theorem u4lem3n 755
Description: Lemma for unified implication study. (Contributed by NM, 17-Dec-1997.)
Assertion
Ref Expression
u4lem3n (a4 (b4 a)) = (a ∩ ((ab) ∩ (ab )))

Proof of Theorem u4lem3n
StepHypRef Expression
1 u4lem3 752 . . 3 (a4 (b4 a)) = (a ∪ ((ab) ∪ (ab )))
2 ax-a2 31 . . . . . 6 ((ab) ∪ (ab )) = ((ab ) ∪ (ab))
3 anor1 88 . . . . . . . 8 (ab ) = (ab)
4 df-a 40 . . . . . . . 8 (ab) = (ab )
53, 42or 72 . . . . . . 7 ((ab ) ∪ (ab)) = ((ab) ∪ (ab ) )
6 oran3 93 . . . . . . 7 ((ab) ∪ (ab ) ) = ((ab) ∩ (ab ))
75, 6ax-r2 36 . . . . . 6 ((ab ) ∪ (ab)) = ((ab) ∩ (ab ))
82, 7ax-r2 36 . . . . 5 ((ab) ∪ (ab )) = ((ab) ∩ (ab ))
98lor 70 . . . 4 (a ∪ ((ab) ∪ (ab ))) = (a ∪ ((ab) ∩ (ab )) )
10 oran3 93 . . . 4 (a ∪ ((ab) ∩ (ab )) ) = (a ∩ ((ab) ∩ (ab )))
119, 10ax-r2 36 . . 3 (a ∪ ((ab) ∪ (ab ))) = (a ∩ ((ab) ∩ (ab )))
121, 11ax-r2 36 . 2 (a4 (b4 a)) = (a ∩ ((ab) ∩ (ab )))
1312con2 67 1 (a4 (b4 a)) = (a ∩ ((ab) ∩ (ab )))
Colors of variables: term
Syntax hints:   = wb 1   wn 4  wo 6  wa 7  4 wi4 15
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i4 47  df-le1 130  df-le2 131  df-c1 132  df-c2 133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator