Proof of Theorem u3lem3n
Step | Hyp | Ref
| Expression |
1 | | u3lem3 751 |
. . 3
(a →3 (b →3 a)) = (a ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
2 | | ax-a2 31 |
. . . . . 6
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b)) |
3 | | anor3 90 |
. . . . . . . 8
(a⊥ ∩ b⊥ ) = (a ∪ b)⊥ |
4 | | anor2 89 |
. . . . . . . 8
(a⊥ ∩ b) = (a ∪
b⊥
)⊥ |
5 | 3, 4 | 2or 72 |
. . . . . . 7
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b)) = ((a ∪
b)⊥ ∪ (a ∪ b⊥ )⊥
) |
6 | | oran3 93 |
. . . . . . 7
((a ∪ b)⊥ ∪ (a ∪ b⊥ )⊥ ) =
((a ∪ b) ∩ (a
∪ b⊥
))⊥ |
7 | 5, 6 | ax-r2 36 |
. . . . . 6
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b)) = ((a ∪
b) ∩ (a ∪ b⊥
))⊥ |
8 | 2, 7 | ax-r2 36 |
. . . . 5
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) = ((a ∪ b) ∩
(a ∪ b⊥
))⊥ |
9 | 8 | lor 70 |
. . . 4
(a ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = (a ∪ ((a
∪ b) ∩ (a ∪ b⊥ ))⊥
) |
10 | | oran1 91 |
. . . 4
(a ∪ ((a ∪ b) ∩
(a ∪ b⊥ ))⊥ ) =
(a⊥ ∩ ((a ∪ b) ∩
(a ∪ b⊥
)))⊥ |
11 | 9, 10 | ax-r2 36 |
. . 3
(a ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = (a⊥ ∩ ((a ∪ b) ∩
(a ∪ b⊥
)))⊥ |
12 | 1, 11 | ax-r2 36 |
. 2
(a →3 (b →3 a)) = (a⊥ ∩ ((a ∪ b) ∩
(a ∪ b⊥
)))⊥ |
13 | 12 | con2 67 |
1
(a →3 (b →3 a))⊥ = (a⊥ ∩ ((a ∪ b) ∩
(a ∪ b⊥ ))) |