QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  u5lem4 GIF version

Theorem u5lem4 760
Description: Lemma for unified implication study. (Contributed by NM, 24-Dec-1997.)
Assertion
Ref Expression
u5lem4 (a5 (a5 (b5 a))) = (a5 (b5 a))

Proof of Theorem u5lem4
StepHypRef Expression
1 u5lemc1 684 . . 3 a C (a5 (b5 a))
21u5lemc4 705 . 2 (a5 (a5 (b5 a))) = (a ∪ (a5 (b5 a)))
3 u5lem3 753 . . . 4 (a5 (b5 a)) = (a ∪ ((ab) ∪ (ab )))
43lor 70 . . 3 (a ∪ (a5 (b5 a))) = (a ∪ (a ∪ ((ab) ∪ (ab ))))
5 ax-a3 32 . . . . 5 ((aa ) ∪ ((ab) ∪ (ab ))) = (a ∪ (a ∪ ((ab) ∪ (ab ))))
65ax-r1 35 . . . 4 (a ∪ (a ∪ ((ab) ∪ (ab )))) = ((aa ) ∪ ((ab) ∪ (ab )))
7 oridm 110 . . . . . 6 (aa ) = a
87ax-r5 38 . . . . 5 ((aa ) ∪ ((ab) ∪ (ab ))) = (a ∪ ((ab) ∪ (ab )))
93ax-r1 35 . . . . 5 (a ∪ ((ab) ∪ (ab ))) = (a5 (b5 a))
108, 9ax-r2 36 . . . 4 ((aa ) ∪ ((ab) ∪ (ab ))) = (a5 (b5 a))
116, 10ax-r2 36 . . 3 (a ∪ (a ∪ ((ab) ∪ (ab )))) = (a5 (b5 a))
124, 11ax-r2 36 . 2 (a ∪ (a5 (b5 a))) = (a5 (b5 a))
132, 12ax-r2 36 1 (a5 (a5 (b5 a))) = (a5 (b5 a))
Colors of variables: term
Syntax hints:   = wb 1   wn 4  wo 6  wa 7  5 wi5 16
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i5 48  df-le1 130  df-le2 131  df-c1 132  df-c2 133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator